Archive

Environment


We are all aware of the major drought issues in California this year – it has been building for a couple years.  The situation is difficult and of course the hope is rain, but California was a desert before the big water projects on the 1920s and 30s. Los Angeles gets 12 inches of rain, seasonally, so could never support 20 million people without those projects.  The central valley floor has fallen over 8 feet in places due to groundwater withdrawals. Those will never come back to levels of 100 years ago because the change in land surface has collapsed the aquifer. But the warm weather and groundwater has permitted us to develop the Central Valley to feed the nation and world with produce grown in the desert.  The development in the desert reminds me of a comment I saw in an interview with Floyd Dominy (I think), BOR Commissioner who said his vision was to open the west for more people and farming, and oversaw lots of projects to bring water to where there was none (Arizona, Utah). The problem is that the west never head much agriculture or population because it was hot, dry and unpredictable – hence periodic droughts should be no surprise – the reason they are a surprise is that we have developed the deserts far beyond their capacity through imported water and groundwater.  Neither may be reliable in the long run and disruptions are, well, disruptive.  Archaeologist Bryan Fagan traced the fall of Native American tribes in Arizona to water deficits 1000 years ago.

Yet policymakers have realized that civil engineers have the ability to change the course of nature, at least temporarily, as we have in the west, south, Florida. I often say that the 8th and 9th wonders of the world are getting water to LA over the mountains and draining the southern half the state of Florida. I have lived in S. Florida for 25+ years and am very familiar with our system. The difference though is that we have the surficial Biscayne aquifer and a rainy season that dumps 40 inches of rain on us and LA doesn’t (as a note of caution, for the moment we are 14 inches below normal in South Florida – expect the next drought discussion to ensue down here in the fall). The biggest problems with the Everglades re-plumbing are that 1) no one asked about unintended consequences – the assumption was all swamps are bad, neglecting impacts of the ecosystem, water storage, water purification in the swamp, control of feedwater to Florida Bay fisheries, ….. 2) one of those unintended consequences is that the recharge area for the Biscayne aquifer is the Everglades. So less water out there = less water supply along the coast for 6 million people 3) we lowered the aquifer 4-6 ft along the coastal ridge, meaning we let saltwater migrate inland and contaminate coastal wellfields 4) we still have not figured out how to store any of that clean water – billions o gallons go offshore every day because managing Lake Okeechobee and the upper Everglades was made much more difficult when the Everglades Agricultural Area was established on the south side of Lake Okeechobee, which means lots of nutrients in the upper Everglades, and a lack of place for the lake to overflow, which meant dikes, more canals, etc. to deal with lake levels.

The good news is that people only use 11% of the water in California and Florida, and that Orange County, CA and others have shown a path to some degree of sustainability (minus desal), but the real problem is water for crops and the belief that communities need to grow. When we do water intensive activities like agriculture or housing, in places where it should not be, it should be obvious that we are at risk. Ultimately the big issue it this – no policy makers are willing to say there is “no more water. You cannot grow anymore and we are not going to send all that water to Ag.”  Otherwise, the temporary part of changing nature will come back to haunt us.


As technology advances I have an observation, and a question that needs to be asked and answered.  And this could be a pretty interesting question.  Back in the day, say 100 or 150 years ago, there were not so many people.  Many activities occurred where there were few people and impacts on others were minimal.  In some cases ecological damage was significant, but we were not so worried about that because few people were impacted by that ecological damage.  In the 20th century, in urban locations, the impact of one’s activities on others became the basis for zoning laws – limiting what you could do with your property because certain activities negatively impacted others.  And we certainly had examples of this – Cuyahoga River burning for one.  Of course this phenomenon of zoning and similar restrictions was mostly an urban issue because there potential to impact others was more relevant in urban areas.  We also know that major advances in technology and human development tend to occur in population centers (think Detroit for cars, Pittsburgh and Cleveland for steel, Silicon Valley, etc.).  People with ideas tend to migrate to urban areas, increasing the number of people and the proximity to each other.  Universities, research institutions, and the like tend to grow up around these industries, further increasing the draw of talent to urban areas.  The observation is that urban areas tend to have more restrictions on what people do than rural areas.  So the question – do people consciously make the migration to urban areas realizing that the migration for the potential financial gain occur with the quid pro quo of curbing certain freedoms to do as you please?  Of does this artifact occur once they locate to the urban areas?  And is there a lack of understanding of the need to adjust certain activities understood by the rural community, or does it become yet another point of philosophical or political contention?  I have blogged previously about the difference between rural and urban populations and how that may affect the approach of utilities, but read a recent article that suggests that maybe urban citizens accept that financial gains potential of urban areas outweighs the need to limit certain abilities to do as you please to better the entire community.  They are motivated by potential financial opportunities that will increase their standing and options in the future.  So does that mean urban dwellers understand the financial tradeoff differently than rural users?  Or is it a preference issue.  And how does this translate to providing services like water to rural customers, who often appear to be more resistant to spending funds for improvements?  While in part their resistance may be that their incomes tend to be lower, but is their community benefit concern less – i.e. they value their ability to do as they please more than financial opportunities or the community good?  I have no answer, but suggest that this needs some further study since the implications may be significant as rural water systems start to approach their life cycle end.


The Union of Concerned Scientists reviewed recent wildfires in the west. One of the concerns they raised was that increased forest fires are both a climate change and a man-induced issue.  Wildfires on federal land has increased 75% on federally owned land.  Fire impacted areas are larger and impact more development which encroaches on those federal holdings.  We spend over $1 billion in fire fighting on federal lands each year.  But why?

Because many of the forest are in mountainous areas, fire season starts earlier in year with less mountain snowfall.  And that is  most years as snowfall accumulation decrease.  Temperatures are warmer, earlier with shortens the snow season.   Water runs off faster.  Of course the fact that we altered management philosophies to prevent all forest fires didn’t help because some burning is natural each year. As a result there is a huge reserve of unburned land out west.  The beetles did not help either as they left millions of acres of dead trees on mountain sides from Canada to New Mexico. Beetle infestation is clearly climate change driven.

The solutions are more difficult.  Building up next to federal land needs to be restricted.  Regulations in dealing with trees, bushes and underbrush in fire prone areas need to be enacted and enforced. Early spring fires set as control burns need to happen more frequently. But these are all local responses to a global climate problem.  That response is currently lacking.  These are leadership issues.

From a utility perspective, this issue may be significant.  We like those high, clean mountain streams.  But after a forest fire, those streams are often warmer and less clean.  The soot, ash and runoff from now barren land can create significant impacts on water plant, create major treatment alterations, increase costs, and risk contamination.  A friend some years ago suggested that utilities were instruments of social change.  The fact that we have treated water and sewer creates social change.  We need to protect water supplies and therefore we should be a part of the conversation on land use.  That requires some leadership.

 


It’s February already!  Where has the year gone?  My apologies for a January without posts.  Things have been busy here and well, blogging got put on the back burner for me with the new semester starting and a new class to design.  But interesting kernels from January:

The World is Trying to Kill You – Dr. Neil deGrasse Tyson

If you have a 20% failure rate, does that make a speculative technology a waste of time?  Conversely if your success is 20% is it successful?   I think no and no.

Have you noticed that February is the month we have been getting the worst winter weather in the Midwest and northeast? Not December or January?  I used to shovel snow all January and wait for the February respite.

Killer whales are now a protected species.  What does that say about the killer whales as SeaWorld?

There is a honeybee crisis.  No really, a real one.  Not the Jerry Seinfeld movie.  But the lesson is the same.  No bees, no food.  We need to figure out how we are killing them.  No doubt when we find out it will come back on pesticides, herbicides, monocultures, some combination of the above.  Not a good thing for farming.

The bison are under attack again in Montana.  Maybe Mother Nature is trying to tell us something – buffalo want to roam to their winter grazing fields.   And no brucelliosis, the issue rancher bring up as to why the bison are bad, has still NEVER been transmitted from bison to cattle.  Bison are way better on the land since there hooves are much large and they do not compact the ground as much.  But they are not as stupid as cattle.  They know they can walk thought a barbed wire fence.  They are bison afterall!

A Utah rancher shot and killed Echo, the female wolf that made it to the Grand Canyon last summer and became a national story.  He thought she was a coyote.  Um, I think wolves are a little bit bigger than coyotes.  We have a man with a gun who can’t tell what he’s shooting.  What could possibly go wrong with that?

Then there is the bear hunt in Florida because people move closer to the woods and cannot figure out how to secure their garbage of close their garage doors.  Bears get killed.  People…..

IMG_6442

Miami Beach installed $40 million dollars in pumps last summer, with an expected $300 million for.  The nearshore nutrient concentrations increased dramatically (a factor of six), which could adversely impact beach quality, fishing and reefs.  Unintended consequences, but an issue was brought up as a potential concern.


2014 is almost over.  Hard to believe.  I have been attending or annual Florida Section AWWA conference, meeting up with old friends, making new ones and learning new things.  Conferences and connections allow us to do our jobs more efficiently because as we learn how to solve problems or where we can find a means to solve whatever problem we encounter.  It is a valuable experience that I encourage everyone to get involved with, especially young people who need to make connections to improve their careers.  The technical sessions seemed to be well received and popular.  That means that there are issues that people want to hear about.  Things we focused on were alternative water supplies, water distribution piping issues, disinfection byproducts, ASR and reuse projects.

The reuse projects focused on Florida efforts to deal with 40 years of reuse practice and a movement toward indirect potable reuse. This is the concept where we treat wastewater to a standard whereby it can be put into a waterway upstream of a water supply intake or into the aquifer upstream of wells.  The discussion was extended to a number of discussions about water shortages and solutions for water limited areas.  Florida averages 50-60 inches of rain per year as opposed to the 6-10 inches in areas of the southwest or even 15-20 inches in the Rockies which makes the concept of water limitations seem a bit ludicrous for many, but we rely on groundwater that is recharged by this rainfall for most of our supplies, a lack of topography for storage and definitive wet and dry seasons that do not coincide with use.

The situation is distinctly different in much of the US that relies on surface waters or is just plain water limited.  We have a severe multi-year drought going on in California and huge amounts of groundwater being used for irrigation in many rain-challenged areas.  That is what all those crop-circles are as you fly over the Plains states and the wet.  Where you see crop circles, think unsustainable water supplies.  They are unsustainable because there is no surface water and the recharge for these aquifers is very limited.  Most leakance factors in aquifers is over estimated and hence water levels decline year after year.   Water limited places need answers because agriculture often out-competes water utilities, so in the worst of those areas, there are discussions about direct potable reuse (which occurs in Texas).

Direct and indirect potable reuse are offered as answers which is why this topic was popular at our conference.  A recent 60 Minutes presentation included a tour and discussion of the Orange County Groundwater Replenishment program, where wastewater is treated and injected into the ground for recovery by wells nearer to the coast.  They discussed the process (reverse osmosis, ultraviolet light and peroxide) and they took a drink.  “Tastes like water” was Leslie Stahl’s comment – not sure what she expected it to taste like, but it provides a glimpse into the challenge faced by water utilities in expanding water supplies.   Orange County has been injecting water for many years into this indirect potable reuse project.  The West Coast Basin Barrier Project and several others in California have similar projects.  South Florida has tested this concept 5 times, including one by my university, but no projects have yet been installed.

But until recently, there were no direct potable reuse projects where wastewater is directly connected to the water plant.  But now we have two – both in Texas with a number of potential new projects in the pipeline.  Drought, growth, water competition have all aligned to verify that there many are areas that really do not have water, and what water they do have is over allocated.  A 50 year plan to manage an aquifer (i.e.. to drain it) is not a sustainable plan because there may not be other options.  But Texas is not alone.  Arizona, Nevada, New Mexico, Utah, Colorado, The Dakotas, Kansas Oklahoma and I am sure others have verified water limitations and realize that sustainable economic activity is intrinsically linked to sustainable water supplies.  Conservation only goes so far and in many of these places, conservation may be hitting its limits.  Where your rainfall is limited and/or your aquifer is deep, replenishable resource is not always in the quantities necessary for economic sustainability.  Water supplies and economic activity are clearly linked.

So the unimaginable, has become the imaginable, and we now have direct potable reuse of wastewater.  Fortunately we have the technology – it is not cheap, but we have demonstrated that the reverse osmosis/ultraviolet light/advanced oxidation (RO/UV/AOP) process will resolve the critical contaminant issues (for more information we have a paper we published on this). From an operational perspective, RO membranes, UV and chemical feeds for AOP are easy to operate, but there are questions about how we insure that the quality is maintained.  The technical issues for treatment are well established.  Monitoring is a bit more challenging – the question is what to monitor and how often, but even this can be overcome with redundancy and overdosing UV.

But drinking poop-water? The sell to the public is much more difficult.  It is far easier to sell communities without water on the idea, but the reality we need to plan ahead.  There are no rules.  There are no monitoring requirements, but we MUST insure the public that the DPR water they are drinking is safe.  WE are gaining data in Texas.  California and Texas are talking about regulations.  The University of Miami has been working of a project where they have created a portion of a dorm that makes its own water from wastewater.  Results to come, but the endeavor shows promise.


So what does this mean for water and sewer utilities. First, we’d love to stay out of the fray. Water and sewer utilities recognize that they are the “peak” power supply for electric utilities. The means to expand power supplies is made difficult by the rules for capital recovery for power utilities that penalizes peak and redundant power supply construction. It must be used and useful to qualify for a return. Hence NextEra builds inexpensive, small increment renewable wind systems to be made whole and encourages residents to reduce demands so they do not need to build more large scale capacity. That works as long as access to renewables or increases in efficiency are available. The use of federal subsidies encourages the used of new technology but without the subsidies, expect the construction to slow.

The European Union is looking to phase out renewable power subsidies by 2017, which may have fairly significant consequences for the European renewable market. The Koch brothers and the Tea Party operatives they fund through many organizations like the Institute for Energy Research, Americans for Prosperity and the Heritage Foundation, are fighting federal tax credits for wind, while backing tax credits for oil and gas. Why do the Koch brothers keep showing up? Because as we noted in a prior blog – they stand to lose profits if the US depends less on oil and gas IT si a problem with big money interests using that money for self preservation as opposed to progression of technology and ideas.

Think what would have happened 100 years ago if big money was allowed to control progress. And I have just the perfect scenario pitting two sides of my family. My mother’s great uncle made Concord coaches. As long as horse drawn carriages and coaches were the primary transportation options, they made money. OF course many cities and towns found that they spend much of their tax money cleaning up after the horses, one of the all-time yuckiest jobs. Tons of horse poop was cleaned up nightly on the streets on many cities. Images are available on line. Of course there was also the stench, disease, vectors, etc associated with all that poop.

Then came Henry Ford. My Dad’s side of the family were Detroiters. They got jobs in the Ford factories, and made money from services to autoworkers as well. The cities loved having cars – less poop. In fact Henry’s cars worked so well, that very quickly cities didn’t have to pick up poop. And the stench and disease decreased. Of course back then, my mothers’ family did not have the same means to buy influence to prevent Henry Ford from producing cars. My uncle went broke, but America and my father’s family in Detroit, benefitted greatly as a result of the new technology. I think we all benefitted from the automobile. Thankfully the coachmakers didn’t have money.

Using politics and influence to resist new technology seems unAmerican. Using subsidies to encourage is seems far more beneficial to society as long as those subsidies actually benefit society. Subsidies have long been a means for governments to alter consumer and corporate behavior and encourage new technologies. Subsidies for recycling steel, aluminum, glass, paper and other materials remained in place until the technology was cost effective to compete with new materials. Now recovered steel is cheaper than new steel materials. The subsidies had their effect. The same is true with aluminum and glass. Subsidies in the form of grants encouraged water and sewer utilities to upgrade treatment and install pipes to serve new customers. Now those are low interest loans because most of the cost effective connections have been made. It benefitted society.

Subsides have been used for years in the US and Europe to encourage renewable power use. The result is a reduction in renewable costs as more people invested in the technology. Greater supply means lower costs (economy of scale, and, theory of economic supply and demand), and subsides are designed to reduce purchase prices sooner than the market might otherwise. Otherwise most of these industries never get off the ground because they cannot get to cost effective production levels. Stay tuned.


In this blog we are going to talk about trends in the power industry and how they may affect utilities.  One of the ongoing themes of this blog is that to be leaders in the field, we need to be cognizant of what others are doing and how those actions might affect utility operations.  Power is a big cost for utilities – often 10-15% of the total operations costs where a lot of pumping is involved. In most communities, the utility system is among the largest consumers of power, which is why many utilities have load control agreements in place – power companies can off-load power demands by having the utilities go to onsite generators.  Our community’s building account for 70% or more of local energy use.

The need for power is expanding, albeit at a lower rate that population growth in many communities.  This is because new building construction measures tend to insulate better and install more energy efficient equipment.  Power companies often will subsidize these improvements to reduce the need for more expensive plant expansions.  Where expansions are needed, purchase/transfer agreements or renewables are often a convenient answer.

But long-term we are seeing that the power industry is changing in other ways too.  Already we see a migration away from coal for power generation.  This was occurring before the new regulations were in place for carbon dioxide.  Certain utility companies like NextEra, the largest wind and solar power generator in the US, and the parent of Florida Power and Light, have reduced greenhouse gas emissions from their plants by converting to other sources like combined heat and power (CHP), and increasing efficiency.  The typical oil or coal power plant is 30-35% efficient, while the newer gas turbine systems are up to 45% efficient.  That makes a big difference in costs as well as emissions when gas emissions are half the coal and oil emissions.  NextEra is well placed for carbon trading, a concept some fight, but the US had been emission trading since the early 1990s, so carbon trading markets are already in place.  The only thing needed is the regulations to put them into play.  Buy that NextEra stock now and hope for carbon trading!

But NextEra is not the only likely winner under this carbon trading scenario.  ExxonMobile is big into gas, Exelon is big in the nuclear power industry, Siemens and General Electric, which make wind and gas turbines, are also likely to see growth.  All have poised themselves years ago as the impact of carbon dioxide becomes more apparent.  Most of the industry executives acknowledge climate issues and recognize that people will expect the industry to do its part (the Koch brothers aside).  Many power generators like ConEd and FPL are making changes as well, in advance of the regulatory requirements to do so.  They see it as good business.  They also see it as a means to make more power at a given facility (by increasing efficiency) while reducing water use.  Water use can be a limiting factor, so we will discuss that in a couple days…

 

 


I thought I would post an amusing, but thought-provoking blog today.  In a recent class of mine we started talking about sentinel species and surrogate contaminants as a means to track public health impacts, or the potential for same, in people.  The discussion got into the commonality of wolves, sharks, alligators and snail kites as role players for ecosystem health.  In each case the top predator control the other species.  The most obvious example is wolves.  When returned to Yellowstone National park, the beavers returned.  AS opposed to hunting the beavers to extermination, it appears that the lack of predators cause the elk to feed closer to streams, thereby depriving the beavers of the aspens needed for beaver dames.  And thus the wetland ponds virtually disappeared as well.  A recent Sun Sentinel article noted that the Fish and Wildlife Service has shot an amazing 75,000 coyotes in the US last year!  Biologists noted that the coyote has expended into areas that wolves used to inhabit (including Alaska!).  They did it because there are no wolves – the wolves did not tolerate that competition. Without the wolves, there is not stopping them or their associated destruction of small animals.   We see hardhead catfish, a scourge of coastal fishermen, abundance now that baby shark populations have diminished.  The sharks consume the same stuff the catfish to, then move on.  The catfish, not so much and OW!!!  We change the top predator and the system changes, often irreversibly.  Which raises the question about the deadliest predator -us.  We’ve moved in everywhere we wanted after eliminating the competition.  The question is:  Are we wolves, or hardhead catfish?