Archive

pollution


The concept of regulations is to address problems.  All regulations are based on trying to correct a problem that has already occurred.  We have rules that were developed to try to address contaminants in water, and rules designed to address a variety of potential threat to water supplies.  In a blog over a year ago I asked the question, in light of the mess in West Virginia, why do we permit power companies to store coal ash next to streams?  This is a huge potential health impact to water customers, as well as to the ecosystem that we rely on to protect water supplies in natural areas.  A 20 year old Congressional Act did sorta prohibit the discharge of coal ash to streams from mining, but did not address storage where the accidents actually occur.  So we have rules that didn’t remove the piles from the banks, and didn’t offer a solution to remove it which would have been the appropriate regulatory response.  We should all be on the bandwagon that urges Congress to require power companies to properly dispose of this stuff, and to provide a means to do so.

However, in classic “Failure to Learn from the Past” mode, instead we get a directive in Washington to review the rollback of the stream rule that was developed to address a 20 year old lawsuit over stream protections and “waters of the US.”  That revised stream rule got held up in 2015 by litigation (EPA Secretary Pruitt led one of those suits), and while the directive is not exactly allowing coal ash into streams as noted in the media, it does give you the sense that there will not be any effort to address this problem.  That should concern water industry leaders.

Advertisement

WIFIA was approved:

https://www.epa.gov/wifia

Good news for water funding, but still a drop in the bucket of what is needed

 

Power utilities are not really interested in coal regardless what Congress and the President do to encourage it.

https://www.pressreader.com/usa/orlando-sentinel/20170208/281784218834781

Are we surprised?  Coal is dirty and creates obvious problems.  Coal emissions caused English kings to ban coal in London 400+ years ago.  Coal jobs are not coming back.  Nor are manufacturing jobs.  It has nothing to do with China – everything to do with technology (robots).

Broward College is seeking $29 million for classroom upgrades because there are not enough seats in the classrooms.  The rooms are cramped and the “old seal with a  wooden table on top isn’t big enough to accommodate students today.”  It doesn’t take much to read between those lines.  About like Texas making manholes 28 inches in diameter because the guys cant fit into the smaller ones anymore….

But Beijing is sinking:

http://www.independent.co.uk/news/world/asia/beijing-is-sinking-into-the-ground-says-report-a7114201.html

Not sure how that correlates, but interesting….

 


Every water body will be different but in southeast Florida there are a couple options for Lake Okeechobee’s waters.  One option has been in discussion for years – buy back the EAA lands and restore the Everglades flow.  That has two benefits – improved water quality, and less potential for east-west releases.  The downside is cost.  But the sugar industry knows that the muck layer is decreasing and there are plans to develop the EAA into hundreds of thousands of housing units.  That was not the intention in the 1940s when the EAA was created, but trying to stop someone from developing land, especially when the lake communities are challenged economically, is difficult.  Buying the land would remove it from production, but decrease tax revenues.  And it would need to be managed with no guarantee that it would cleaned up quickly.

The alternative?  The South Florida Sun-Sentinel had a front page article that is a little scary.  The figure below is reproduced from that article.  The discussion was if there is no conservation/public purchase of land, Florida may look very different.  The impact of not buying the land is development.  More people.  More taxes.  More stormwater.  The fertilizer does not go away – it now fertilizes lawns and golf courses.  Add wastewater, and human activities.  We find that urban living and farming can have similar impacts from a nutrient perspective.  So development may exacerbate the problem and given that our modeling indicates that sea level rise imperils inland communities from groundwater, this is not a solution to coastal risk.  Given limitations with local governments inland, it may create a larger crisis.  All there things need discussion, but the question is – will the algal issues on the coast improve?

graphic-of-development

http://www.pressreader.com/usa/sun-sentinel-palm-beach-edition/20160916/281479275879132/textviewer worse?


The most important parameters regulating algal growth are nutrient quantity and quality, light, pH, turbulence, salinity and temperature. Light is the most limiting factor for algal growth, followed by nitrogen and phosphorus limitations, but other nutrients are required including carbon. Biomass is usually measured by the amount of chlorophyll a in the water column.  Water temperature influences the metabolic and reproductive rates of algae. Most species grow best at a salinity that is slightly lower than that of their native habitat,  The pH range for most cultured algal species is between 7 and 9, with the optimum range being 8.2-8.7. Through photosynthesis, algae produce oxygen in excess of respiratory requirements during daylight hours. Conversely, during low light or nighttime periods algae respire (consume) dissolved oxygen, sometimes depleting water column concentrations. Thus, high algae concentrations may lead to low dissolved oxygen concentrations.

A common solution for algae is copper sulfate.  Copper Sulfate works to kill the algae, but when it dies, it settles to the bottom of the water body where it becomes a carbon source for bacteria and future algae.  One will often see shallow ponds with rising algae.  But there is significant concern about copper in coastal water bodies.  Copper is toxic to marine organisms so USEPA and other regulatory bodies are considering the limits on copper use.  Such a limitation would severely limit options in dealing with algal blooms near coastal waters.

Mixing is necessary to prevent sedimentation of the algae, to ensure that all cells of the population are equally exposed to the light and nutrients.  So oxygenation can help (it also mixes the water.  The depth of south Florida water bodies is problematic (shallow and therefore warmer than normal).  But oxygen will help microorganisms on the bottom consume the carbon source on the bottom, which might slow algal growth.  Analysis is ongoing.

Two other conditions work against controlling blue-green algae outbreaks: climate change and political/regulatory decision-making.  Lake Okeechobee has routine algal blooms from the nutrients introduced from agriculture and runoff around the lake, which encouraged an artificial eutrophication of the lake years ago.  It continues today.  Warmer weather will encourage the algal blooms in the future.  The decisions to discharge the water without treatment is a political one.  From a regulatory perspective, algae is seen as a nuisance issue, not a public health or environmental issue.  But algal blooms consume oxygen and kill fish, so the ecosystem impact is considerable – it is not a nuisance .


The term algae encompass a variety of simple structures, from single-celled phytoplankton floating in the water, to large seaweeds.  Algae can be single-celled, filamentous or plant-like, anchored to the bottom.  Algae are aquatic, plant-like organisms – phytoplankton.  Phytoplankton provides the basis for the whole marine food chain. Phytoplankton need light to photosynthesize so will therefore float near the top of the water, where sunlight reaches it.  Light is the most limiting factor for algal growth, followed by nitrogen and phosphorus limitations), but other nutrients are required including carbon, silica, and other micronutrients. These microscopic organisms are common in coastal areas.  They proliferate through cell division.

A natural progression occurs in many water bodies, from diatoms, to green algae to yellow/brown to blue-green, with time and temperature.  The environment is important.  Southern waters are characterized as being slow moving, and warm.  This encourages cyanobacteria – or blue green algae.  The introduction of nutrients is particularly difficult as it accelerates the formation of the blue green algae. Blue-green algae creates the bright green color, but is actually an end-of-progression organism.

If cells are present in the water mass in large numbers an algal bloom occurs.  An algal bloom is simply a rapid increase in the population of algae in an aquatic system. Blooms may occur in freshwater as well as marine environments. Colors observed are green, bright green, brown, yellowish-brown, or red, although typically only one or a few phytoplankton species are involved and some blooms may be recognized by discoloration of the water resulting from the high density of pigmented cells.

So the desire for development created the idea to drain the swamp, which led to exposure of dark, productive soil that led to farming, which lead to fertilizers, which led to too much water, and water pollution leading to algae.  A nice, predictable progression created by people.  So what is the solution?


Fred+Bloetscher+Senate+Committee+Holds+Hearing+cQCSwINqgm3l

Water and wastewater utilities spend a lot of time dealing with current issues =- putting out “fires.”  But there are larger trends that will affect the industry.  Here are a couple recent topics that we should consider in our industry:

Will robots be doing all our repetitive jobs?  If so what does that mean for all the people doing those jobs now.  Most do not require a lot of skills, and many of those in the jobs that will be lost, do not have the skills for other jobs?  Does the $15 per hour minimum wage accelerate this transition?  How does this affect the water industry?  Meter readers might be replaced with AMR systems.  Customer service is already migrating to direct banking.  There is a change coming.

What does the driverless car mean for us?  I am thinking about an old Arnold Schwartzenegger movie.  For utilities the issue may be how we interact with unmanned vehicles, especially when what we do can be disruptive to traffic.  What happens if those cars get into an accident?  And Warren Buffett is thinking about the impact of this on the insurance industry.  He owns a lot of GEICO stock.  It is doubtful many utility vehicles will be unmanned, in the near-term, but do our manned vehicles and the potential disruption leave us open to greater risk of loss?

Speaking of Warren Buffett says the economy is far better than certain candidates suggest.  I tend to trust Mr. Buffett.  He’s been doing this a long time and has been fabulously successful.  But he notes structural changes to the economy like those noted above, are ongoing.  That will create conflict for certain professions that migrate to automation, much as manufacturing did in the 1970s.  He raises concern about what happens to those workers and suggests that we have not planned enough for those workers who get displaced as the economy undergoes continuing transitions.  In the late 1970s we had CETA and other jobs training programs as we moved from manufacturing to other jobs.  He does not see that in place now.  The at-risk – the poor, minorities, the less educated, rural citizens…. in other words, the usual groups will be hit harder than the rest of the population.  I don’t hear that discussion on the campaign trail but utilities may want to follow these trends is the hope that we can acquire some of the skillsets that we need.  Or provide that training.

Florida’s flood protection plan received a C- from a study called States at Risk.  It said Florida lacks a long term plan for rising seas, despite being vulnerable.  On an unrelated note, the state is expecting insurance premiums to increase 25% or more for flood insurance for homeowners.  And local officials are working busily on FEMA maps to exclude as many properties as possible from flood insurance requirements.  Maybe those things are all related, just at opposite purposes, but who is going to get the calls when flooding occurs?  Storm water utilities, and sewer systems where the manholes are opened to “facilitate drainage.”  The question is what the ratings are for other states as Florida was not the least prepared nor is it the only state with exposure.

A final current trend to think about is this:  Current sea level rise projections have increase the high end, but remained steady for the 50 percentile case.  By 2200 we may see seas at 10 ft higher. That would be a major problem for south Florida.  But the world population will be over 15 billion, which exceeds the carrying capacity of agriculture (at present projections and techniques).  It also places over half the world in water limited areas.  So sea level rise is going to be huge in south Florida, but will concern be localized because of more pressing issues?   Is the number of people going to be our biggest issue in 2200?  Note both will be critical for a large portion of those 15 billion people, but the solution to either is…..?

 


photo 2A week or so ago, on a Sunday afternoon, I flew across Middle America to Colorado for a meeting and was again struck by the crop circles that dominate the landscape west of the Mississippi River.  They are everywhere and are a clear sign of unsustainable groundwater use.  I recently participated in a fly in event for National Groundwater Association in Washington DC, where several speakers, including myself, talked about dwindling groundwater levels and the impact of agriculture, power and economies.  The impact is significant. Dr. Leonard Konikow, a recently retired USGS scientist, noted that he thinks a portion of sea level rise is caused by groundwater running off agriculture and from utilities and making its way to the ocean. He indicated that 5% of SLR each year was caused by groundwater runoff, and has upped his estimates in the past 10 years to 13%.  This is because it is far easier for water to runoff the land than seep into rocks, especially deep formations that may take many years to reach the aquifer.  And since ET can reach 4 ft below the surface, many of the western, dry, hot areas lose most of this water during the summer months.  Hence the impact to agriculture, and the accompanying local communities and their economies will be significant.

It should be noted that the US is a major exported of food to much of the world, including China, so the impact on our long-term economic trade may be significant.  Fortunately the power industry has historically preferred surface waters, but must as power demands increase, they have begun to explore groundwater in rural areas without access to surface waters.  Keep in mind that air-cooled power plants are 25% or more less efficient than water cooled systems and many of these communities lack sufficient reusable water supplied to substitute for cooling.  Hence the projection is a long term negative impact on all of us.

So the question is why isn’t the federal government talking more about this problem?  Is it fear of riling up local political officials that see growth at all costs as necessary?  It is private rights arguments that may spawn lawsuits?  Is it a lack of interest in long-term?  Or the idea that “we have always found a way”. Or is it just buried heads in the sand, leaving the next generation to deal with the problem?  A big issue, yet we do not talk enough about it.  Maybe this is not a surprise since we have not gotten very far with the discussion of limited oil, precious metals, phosphorous or other materials, and unlike them, water appears to be renewable globally.  But water is location specific.  If you have it, great.  If you lose it, a problem.  There are several recent journal articles that make the argument that much of the strife in the Middle East and Africa is water depletion related: water depletion kills local economies.  So we need to ask –what happens if we ignore the looming crisis?  Do we create more “Bundy-type” actions in the rural, dry west because they already lack water?  I suggest it is a cause for concern.


We have a lot of conversations about the impact of people on the ecosystem, the cost to reuse wastewater, competing water demands, water limited areas etc.  All are valid issues to raise and since people control the outcomes in all of these situations, we need to be aware of consequences.  So while Florida is a leader is wastewater reuse for irrigation, it is kinda cool to see what happens when we think outside the box.  The Wakodahatchee wetland is a sewer treatment area created by Palm Beach County Utilities a number of years ago.  This is reclaimed quality water placed into an area specifically designed to allow for nutrient removal and aquifer recharge.  The County placed mosquitofish in the water to reduce mosquitos. Bluegills found there way.  So did the turtles and alligators.  But this is THE bird watching site in southern Palm Beach County.  And it is located between the wastewater plant and a neighborhood.  You can’t get parking easily.  This is an example where looking at the bigger picture seems to have a positive effect on the community and the ecosystem as well.  The birds don’t look unhappy.


 

before+and+after+animas

In the last blog we talked about a side issue: ecosystems, bison, wolves, coyotes and the Everglades, which seem very distant form our day-to-day water jobs, but really are not.  So let’s ask another, even more relevant issue that strikes close to home.  Why is it that it is a good idea to store coal ash, mine tailings, untreated mine waste, garbage, and other materials next to rivers?  We see this over and over again, so someone must think this is brilliant.   It cost Duke Energy $100 million for the 39,000 tons of coal ash and 24 MG of wastewater spilled into the Dan River near Eden NC in 2014. In West Virginia, Patriot Coal spilled 100,000 gallons of coal slurry into Fields Creek in 2014, blackening the creek and impacting thousands of water supply intakes.  Fines to come.  Being a banner year for spills, again in West Virginia, methylcyclohexamethanol was released from a Freedom Industries facility into the Elk River in 2014, contaminating the water supply for 300,000 residents.   Fines to come, lawsuits filed.  But that’s not all.  In 2008, an ash dike ruptured at an 84-acre solid waste containment area, spilling material into the Emory River in Kingston TN at the TVA Kingston Fossil Plant.  And in 2015, in the Animas River in western Colorado, water tainted with heavy metal gushed from the abandoned Gold King mining site pond into the nearby Animas River, turning it a yellow for dozens of miles crossing state lines.

Five easy-to-find examples that impacted a lot of people, but it does not address the obvious question – WHY are these sites next to rivers?  Why isn’t this material moved to more appropriate locations?  It should never be stored on site, next to water that is someone else’s drinking water supply.  USEPA and state regulators “regulate” these sites but regulation is a form of tacit approval for them to be located there.  Washington politicians are reluctant to take on these interests, to require removal and to pursue the owners of defunct operations (the mine for example), but in failing to turn the regulators loose to address these problems, it puts our customers at risk.  It is popular in some sectors to complain about environmental laws (see the Presidential elections and Congress), but clearly they are putting private interests and industry before the public interest.  I am thinking we need to let the regulators do their job and require these materials to be removed immediately to safe disposal.  That would help all of us.

%d bloggers like this: