Archive

planning


The troubling aspect of that is that Governing magazine reports that many state are likely to see less revenue in 2017 vs 2016.  Governing‘s analysis of projected 2017 budget data from the National Association of State Budget Officers shows shows states now have a median 4.9 percent of annual expenditures saved for the fiscal year, down from 5.1 percent the previous year.  Illinois, Nevada, New Jersey and North Dakota have no reserves as of 2017.  They add to Kansas, Oklahoma, Arkansas, and Montana who had no reserves last year.  And Alaska that is burning though theirs.  Economic and tax policies are to blame.  The Kansas solution to cut taxes to create economic growth has not worked.  The state continues to get farther behind and it is becoming harder to pretend all is well.  Having no reserves is a crazy bad idea.  It is hard to explain just how crazy bad this idea is – it means that if a negative economic issue occurs, these states are in huge trouble unless they start cutting education and other essential services.  The best way to get out of a budget hole is not cutting education – the one thing needed to dig out and attract new economic activity.  Clearly these officials did not learn from 2008-2011 when there reserves were depleted to address the economic downturn. That makes no sense and dooms their residents to a repeat of 2009/2010, only worse.

 

Advertisement

Many communities that have issue with older infrastructure may suffer from loss of economic opportunities (Flint, Detroit, Cleveland).  This compounds the problem with local capacity for maintenance and report of infrastructure. Many of these issues result from the lack of funding due to the unwillingness of local officials to raise water rates and address hidden infrastructure. Others may feel limited due to the loss of economic activity – Rust Belt cities and the northeast are older; inner cities may be more impacted.  Different areas of the country will have different needs and maybe different magnitudes of need.  Rural communities may not have funding to replace infrastructure.  The first community that abandoned their system was rural.  Newer communities with newer pipe will have far less needs today, but few are taking steps to avoid the infrastructure pitfalls that have hit older communities.  Ultimately these conditions make for a huge backlog of deferred infrastructure investments, mostly in pipe and service lines beneath roads. The only good news is that by correcting the piping, much of the roadway base issues could also be resolved concurrently.

A concurrent problem in the communities hardest hit with infrastructure issues is often that there is pool of skilled labor, but said labor may not be skilled in areas to address their own infrastructure problems.  Likewise youths may be challenged to find work local. The solution to both issues may be similar to that posed by the CETA programs in the late 1970s. In those programs local and state governments were given funds to hire staff to be trained for certain jobs, with the intention that these trained workers would become part of a permanent, expanded workforce.  A similar solution today as a part of an infrastructure bill could be to provide local and state governments for funding for personnel to be trained to perform such work.  The workers could receive training on safety, OSHA issues, and equipment from a local community college or university that would be paid for by the infrastructure bill.  These same people would then be hired by local governments to perform rehabilitation and replacement work, fully funded initially by the federal government s but with an anticipated transition period where by 10 years out, the workforce could be demonstrated to have been expended as a result of the program.

Note that hiring by local governments is a key.  Private sector hiring tends to be job specific and the jobs disappear when the activity moves or ceases.  Hence finding the private sector likely leads only to a temporary increase in labor development.  Local government hiring would more likely increase permanent employment.  The local agencies would need to be given an incentive to encourage this since far too many elected officials see government employment as a negative thing.  This is partly why we have the infrastructure quagmire today.  That attitude needs to change.

The private sector will want their share, and privatization is a confounding issue because people get laid off through privatization and indications are that the middle class gets hurt by privatization (lower wages for the same job).  But the public sector does not manufacture pipe, equipment like backhoes and rollers and other materials would be paid to private vendors in accordance with local and state bid rules.  That would move monies for capital to private vendors.  For large projects the work rules could be applied to contractors much like the ARRA funding requirements – shovel ready and US materials and newly trained staff making up a portion of the work force.  That would meet the tenets of local jobs, fixing local problems with federal dollars for a period of time, perhaps as a mix of grants and low interest loans.

At least 20 years of infrastructure needs exist.  Hence the longer term program could be sustained.  A funding mechanism is in place via state revolving fund programs for a portion of the effort, much like the water, sewer and stormwater funds were channeled through the SRF programs under the ARRA program.  WIFIA and other programs could be used as a dispersal agent, so new bureaucracies would not need to be created.   A prior pattern for implementation is in place and would just need to be “dusted” off an updated.  Bi-partisan support enacted these program in the past and it would seem this would be good for all.

The potential for concern would be raised by private utilities (power, cable, telephone and private water and sewer utilities) which would be effectively shut out of funding, but they are private entities and they have the ability to raise funds on the private equity market.  Capitalism will work well for these organizations, but it does not for most local public works infrastructure systems.  That is why they are public, not private.  Some local governments would resist the requirement to expand the workforce – but that is their choice – a requirement to participate is not implied just as it is not with SRF funds.  Local business communities would likely drive the effort to be involved.

So now we wait and see if anything happens……


The election and post-election discussions have included some concepts about funding for infrastructure.  While this may have been more focused had Clinton been elected, it remains a discussion topic in the Trump White House.  How it would be manifested is a question, with Trump’s faction discussion private cash influxes to make this happen.  The Senate seems to view infrastructure as DOA, which means nothing might occur.  However, in any instances, there needs to be a definition of the word infrastructure and what would qualify for funding.  There are three basic types of infrastructure – public, private and regulated private.  Most SRF programs limit recipients of funding to public entities.

The infrastructure in the public arena falls into three categories which have vastly different types of infrastructures:

Local – water, sewer, stormwater/drainage, local roads, limited bridges.  In larger communities, rail and airports might be included, but the latter is mostly federal subsidies.  Much of water and sewer infrastructure is over 50 years old and is showing signs of weakening.  Buried pipelines are the most at risk.  This would include the 6 million lead services lines in place.  Sewer lines are primarily vitrified clay, also 50+ years old and likely cracked.  Stormwater is corrugated metal and concrete.  Roadway bases in most communities are historical and do not meet today’s standards.  Hence ASCE rates these a D or D-.  Municipal buildings in older communities may also have lead services, asbestos, wood and galvanized pipelines, and other issues to address. The majority of infrastructure under this definition is under local control.

State – highways and bridges – much of America’s commerce depends on these roadways.  25% of bridges need work, 10% are deficient.  Funding for rail and airports is a need from a state perspective.  States may spend more money on transportation that all other infrastructure combined.

Federal – these are very large scale projects like dikes, dams, reservoirs and water transmission systems.  It also includes national parks ($11 billion deficiency), and federal buildings.  The dikes in New Orleans are an example.  However a lot of the funds for these projects are disseminated to locals (like New Orleans), so the actual use may be unclear.

The literature suggests that public investments in infrastructure create at least a 4:1 return.  Good infrastructure is necessary for a vibrant economy.  Deteriorating infrastructure leads to …. Flint, New Orleans after Katrina, and a host of obvious failures.  The impact of climate on communities, particularly sea level rise, can be partially addressed with infrastructure improvements.  Large scale construction can secure jobs both immediately and for the foreseeable future.  The question then is how to secure finding that will lead to jobs, lead to economic development and return on those investments, and will make notable improvements.  That is the challenge at all three levels.  The easiest to address from a sill perspective is state roads and local infrastructure.  From a state perspective the work is focused on highways and transportation.  Locally, the benefit is the local labor force that requires no travel or added overhead.  Just training.  So the question is whether an infrastructure bill can/should have a jobs component built in?


Every water body will be different but in southeast Florida there are a couple options for Lake Okeechobee’s waters.  One option has been in discussion for years – buy back the EAA lands and restore the Everglades flow.  That has two benefits – improved water quality, and less potential for east-west releases.  The downside is cost.  But the sugar industry knows that the muck layer is decreasing and there are plans to develop the EAA into hundreds of thousands of housing units.  That was not the intention in the 1940s when the EAA was created, but trying to stop someone from developing land, especially when the lake communities are challenged economically, is difficult.  Buying the land would remove it from production, but decrease tax revenues.  And it would need to be managed with no guarantee that it would cleaned up quickly.

The alternative?  The South Florida Sun-Sentinel had a front page article that is a little scary.  The figure below is reproduced from that article.  The discussion was if there is no conservation/public purchase of land, Florida may look very different.  The impact of not buying the land is development.  More people.  More taxes.  More stormwater.  The fertilizer does not go away – it now fertilizes lawns and golf courses.  Add wastewater, and human activities.  We find that urban living and farming can have similar impacts from a nutrient perspective.  So development may exacerbate the problem and given that our modeling indicates that sea level rise imperils inland communities from groundwater, this is not a solution to coastal risk.  Given limitations with local governments inland, it may create a larger crisis.  All there things need discussion, but the question is – will the algal issues on the coast improve?

graphic-of-development

http://www.pressreader.com/usa/sun-sentinel-palm-beach-edition/20160916/281479275879132/textviewer worse?


scan063

“Or is running a local government like s business killing it?”

I had an interesting conversation at a conference recently.  The people I was talking to were advanced in their careers and the discussion moved toward the outlook on management in public settings. Once upon a time, most public works and utility managers were civil engineers, but often they were criticized because they were focused on the engineering aspects as opposed to the people aspects of the community.  Their focus was public health and making sure things operated correctly.  Most did whatever was needed to accomplish that.

This led to schools of public administration, which actually started educating some of those same engineers about management of large public organizations, organizational theory, human resource, accounting and planning  I did all that myself at UNC-Chapel Hill.  The goal was to understand finances, people, community outreach, the need to engage citizens and as well as public service.  The outcomes were providing good service.  That however tends to cost a little more than operations although there are opportunities to be a bit entrepreneurial.

So back to the people in the conversation.  They noted that sometime in the 1980s or early 1990s the MPAs were being replaced by MBAs as politicians were focusing on operating “like a business.”  Looking at the MBAs out there, the comment was that business schools do not focus on service, but profits to shareholders, and the training is to cut unproductive pieces that detract from the bottom line.   Hence investments do not get made if the payback is not immediate.  Service is not a priority unless it helps the bottom line.  In a monopoly (like a local government), there are no other option, so service becomes a lessor priority.

So it brought up an interesting, but unanswerable question for now: has the move to more business trained people in government created some of the ills we see?  The discussion included the following questions/observations (summarized here):

  1. Many water and sewer utilities are putting a lot of time and effort into customer service and outreach now after years of criticism for failing to communicate with customers. That appears symptomatic of the monopoly business model.
  2. Our investments in infrastructure decreased significantly after 1980, and many business people focus on payback – so if the investment does not payback quickly, they do not pursue them. How does that impact infrastructure investments which rarely pay back quickly (Note that I have heard this argument from several utility directors with business backgrounds in very recent years, so the comments are not unfounded).  It does beg the questions of whether the business focus compounds our current infrastructure problems.
  3. Likewise maintenance often gets cut as budgets are matched to revenues as opposed to revenues matched to costs, another business principle. Run to failure is a business model, not a public sector model. Utilities can increase rates and we note that phones, cable television, and computer access have all increased in costs at a far faster rate that water and sewer utilities.

Interestingly though was the one business piece that was missing:  Marketing the value of the product (which is different than customer service).  Marketing water seems foreign to the business manager in the public sector.  The question arising there is whether that is a political pressure as opposed to a forgotten part of the education.

I would love to hear some thoughts…

 


The average is 4% of visible infrastructure is in poor condition.  Actually 4-6% depending on the municipality.  And this was visible infrastructure, not buried, but there is not particular reason to believe the below ground infrastructure is somehow far worse off.  Or better.   That 4-6% is infrastructure that needs to be fixed immediately, which means that as system  deteriorate, there is catch –up to do.  The good news is many of the visible problems were broken meter boxes, damaged valve boxes, broken curbs and broken cleanouts- minor appearing issues, but ones that likely require more ongoing maintenance that a water main.  And the appearance may be somewhat symptomatic – people perceive that the system is rundown, unreliable or poorly maintained when they see these problems.  It raises a “Tipping Point” type discussion.  “Tipping Points” Is a book written by Malcolm Gladwell that I read last year (great book – my wife found it in a book exchange for free in Estes Park last summer).  It was along a similar vein of thought as the Freakanomics books – the consequences of certain situations may be less clear than one thinks.  The Tipping point that is most relevant is crime in New York in the early 1990s after Bernard Goetz shot several assailants in the subway.  The problem was significant and the subways were thought to be among the higher risk areas.  The new police chief and Mayor decided that rather that ignore the petty crimes (like many large cities do), they would pursue those vigorously.  So fare hopping on the train and the like were challenged immediately.  They decided that no graffiti would be visible on the subways and cleaned cars every night to insure this remained the case.  Cars with graffiti were immediately removed from service.  New subway cars were ordered.  Pride and public confidence improved.  Crime dropped.  The impact of their efforts was that people recognized that criminal behavior would not be tolerated and fairly quickly criminal activity decreased.  It was a big success story, but the underlying reasons were less discussed, but easily transferrable to our infrastructure.  If we have broken valve boxes, meters, cleanouts, storm drains etc., the same perceptions of a rundown community rise.  Rundown communities lead to a loss of public confidence and trust and pride.   And none of those help our mission or our efforts to increase infrastructure spending.  4% might not look like much, but it can drastically change the perception of the community.  So let’s start to fix those easy things; and document that we did in our asset management programs.

IMG_4677


How many utilities have a 3D map of their infrastructure?  Not many I bet.  But FAU does.  Here is a recently completed project we did with students and the Facilities Maintenance staff at FAU (costs involved).  They needed better mapping and will tie this to their work order system.  It was an excellent opportunity for two groups within one organization that otherwise seem to have little in common wot work toward a great project.  We will be inputting this data into an online asset management system this summer along with some data for Dania Beach so they will have a portion of their utility system in 3D also.  This is part of a tiny project we did for their downtown area.

GIS is a powerful tool and one utilities should embrace wholeheartedly.  There is so much more than mapping to do.  Data gathering in critical, but with Leica and Trimble units, a lot of data can be gathered easily.  LiDAR can be expensive, but the value is tremendous.  You can see that the FAU system is laid on a 3D LiDAR topographic map (6 in vertical accuracy).  Asset condition assessments were also done concurrently, which adds a lot of information to the system (all assets were also photographed and linked).  Drawing files can be downloaded and extruded from 2D to 3D. Engineers know GIS or can learn it, which makes a fully expanded GIS system for the utility easy to derive if the time is spent.  This is a valuable tool when linked to work orders and asset management programs.

So is your utility in 3D?  Capture

 


An asset management program should be developed accordingly to the client’s goals and objectives. It consists of determining the selected area of study, type of system and the quality of data used for evaluation. Before a condition assessment can be determined, an inventory of assets needs to be established – maps, etc. are helpful.  So now you have a map of your water and sewer system and you want to develop a useful system for asset management.  Depending on the accuracy wanted, the data can be gathered in many ways ranging from onsite field investigation which could take a lot of time, to using existing maps, using maps while verifying the structures using aerial photography and video, or field investigations. But most local governments still lack data.  You cannot dig up pipe, or do a lot of destructive testing on buried infrastructure.  So what to do?

The reality is that you have a lot more data than one thinks.  For one thing, most utilities have a pretty good idea about the pipe materials.  Worker memory can be very useful, even if not completely accurate.  In most cases the depth of pipe is fairly similar – the deviations may be known. Soil conditions may be useful – there is an indication that that aggressive soil causes more corrosion in ductile iron pipe, and most soil information is readily available.  Likewise tree roots will wrap around water and sewer pipes, so their presence is detrimental.  Trees are easily noted from aerials.  Likewise road with truck traffic create more vibrations on roads, causing rocks to move toward the pipe and joints to flex.  So with a little research there are at least 5 variables known.  If the break history or sewer pipe condition is known, the impact of these factors can be developed via a linear regression program.  That can then be used as a predictive tool to help identify assets that are mostly likely to become a problem.   We are working on such an example now, but suspect that it will be slightly different for each utility.  Also, in smaller communities, many variables (ductile iron pipe, pvc pipe, soil condition…) may be so similar that differentiating would be unproductive.  That also remains to be seen, which brings up another possible variable- the field perception – what do the field crews recall about breaks?  Are there work orders?  If so do they contain the data needed to piece together missing variables that would be useful to add to the puzzle?

After all we want to avoid this before it happens….

IMG_5040


Asset management plays a vital role to help minimize unnecessary or misplaced spending while meeting the health and environmental needs of a community. The goal is to provide strategic continuous maintenance to the infrastructure before total failure occurs.  Costs should be well distributed over the life of the asset to help avoid emergency repairs. Emergency repairs can cost up to multiple times the cost of a planned repair. Therefore the ultimate goal of asset management is to provide quality, economical infrastructure by identifying the system’s needs and addressing the needs appropriately.  At some point repairs cost more than replacement, or technology may make repairs obsolete.

An asset management program should be developed accordingly to the client’s goals and objectives. It consists of determining the selected area of study, type of system and the quality of data used for evaluation (see Figure 1).  Before a condition assessment can be determined, an inventory of assets needs to be established. Depending on the accuracy wanted, the data can be gathered in many ways ranging from onsite field investigation which could take a lot of time, to using existing maps, using maps while verifying the structures using aerial photography and video, or field investigations. Not doing destructive testing is important to reduce costs.  The question is how you do it.  One project we did was the downtown area of Dania Beach.  You can see the areas that are a problem.

Untitled

 

Figure 1

Asset Dania

FIgure 2


DSCF0032Curtailed water use and conservation are common topics of conversation in areas with water supplies limitations.  As drought conditions worsen, the need for action increases, so when creating a regulatory framework, or when trying to measure water use efficiency, water supply managers often look for easily applied metrics to determine where water use can be curtailed.  Unfortunately, the one-size-fits-all mentality comes with a potential price of failing to fully grasp the consequences decision-making based on such metrics.

One of the issues that water supply regulator like to use is per capita water use.  Per capital water use is often used to show where there is “wasted” water use, such as excessive irrigation.  However such a metric may not be truly applicable depending on other economic factors, and may even penalize successful communities with diverse economic bases.  A heavy industrial area or dense downtown commercial center may add to apparent per capita use, but is actually the result of vibrant economic activity. Large employment centers tend to have higher per capital use than their neighbors as a result of attracting employees to downtown, which are not included in the population.

In south Florida, a recent project I was involved with with one of my students showed that while there was significant variability among utilities, but the general trend of increased economic activity was related to increased per capita use.  Among the significant actors were health care, retail trade, food service and scientific and technical services.  It appears to be these sectors that drive water use upward.  As a result when evaluating the efficiency of a utility, an analysis should be conducted on the economic sectors to insure that water regulations do not stifle economic growth and jobs in a community.   And conversely if you do not have these sectors, you water use should be lower.  Something to think about when projecting or regulating water use.  Limited water use may in fact be limiting economic activity in the area. Of course if you are water limited, limited new withdrawals may be perfectly acceptable if you want to encourage other options, like direct or indirect potable reuse, irrigation, etc.  

It would be interesting to expand this study across the country to see what the national trends look like and how different tourism oriented South Florida might actually be.

%d bloggers like this: