Archive

Monitoring Water


We have all seen the stories about land in the Everglades agricultural Area thissummer.  I was asked to give a presentation at a national conference in Orlando recently about water management in Florida.  It was a fun paper and most of the people there were not from Florida, so it was useful for them to understand the land of water.  Florida has always been a land shaped by water.  Initially it was too much, which frustrated federal soldiers trying to hunt down Native Americans in the 1830s.  In 1881, real estate developer Hamilton Disston first tried to drain the swamps with canals.  He was not successful, but Henry Flagler came through a decade later and constructed the east coast railroad in the 1890s.  It is still there, 2 miles off the coast, on the high ground.  However water limited development so in 1904, Napoleon Bonaparte Broward campaigned to drain the everglades.   Broward’s efforts initiated the first land boom in Florida, although it was interrupted in the 1920s by hurricanes (1926 and 1928) that sloshed water out of Lake Okeechobee killing people and severely damaging property in Miami and around Lake Okeechobee.  A dike was built (the Hover dike – it is still there). However, an extended drought occurred in the 1930s.  With the dike preventing water from leaving Lake Okeechobee, the Everglades became parched. Peat turned to dust, and saltwater entered Miami’s wells. When the city brought in an expert to investigate, he found that the water in the Everglades was the recharge area for the Biscayne aquifer, the City’s water supply.  Hence water from the lake needed to move south.

Resiliency has always been one of Florida’s best attributes.  So while the hurricanes created a lot of damage, it was only a decade or two later before the boom returned.  But in the late 1940s, additional hurricanes hit Florida, causing damage and flooding from Lake Okeechobee prompting Congress to direct the Army Corps of Engineers to build 1800 miles of canals, dozens of pump stations and other structures to drain the area south of Lake Okeechobee.  It is truly one of the great wonders of the world – they drained half a state by lowering the groundwater table by gravity canals. To improve resiliency, between 1952 and 1954, the Corps,  in cooperation with the state of Florida, built a levee 100 miles long between the eastern Everglades and the developing coastal area of southeast Florida to prevent the swamp from impacting the area primed for development.

As a part of the canal construction after 1940, 470,000 acres of the Everglades was set aside for farming on the south side of Lake Okeechobee and designated as the Everglades Agricultural Area (EAA).  However water is inconsistent, so there are ongoing flood/drought cycles in agriculture.   Irrigation in the EAA is fed by a series of canals that are connected to larger ones through which water is pumped in or out depending on the needs of the sugar cane and vegetables, the predominant crops.  Hence water is pumped out of the EAA, laden with nutrients.  Backpumping to Lake Okeechobee and pumping the water conservation areas was a practice used to address the flooding problem.

There was an initial benefit to Lake Okeechobee receiving nutrients.  Older folks will recall that in the 1980s , the lake was the prime place for catching lunker bass.  That was because the lake was traditionally nutrient poor.  That changed with the backpumping which stimulated the biosystem productivity.  More production led to more biota and more large fish.  This works as long as the system is in balance e- i.e. the nutrients need to be growth limiting at the lower end of the food chain.  Otherwise the runaway nutrients overwhelm the natural production and eutrophication results.  Lake Okeechobee is a runaway system – the algae now overwhelm the rest of the biota.  Lunker bass have been gone for 20 years.

The backpumped water is usually low in oxygen and high in phosphorus and nitrogen, which triggers algal progressions, leading to toxic blue-green algae blooms and threaten lake drinking water supplies.  Think Toledo. Prolonged back pumping can lead to dead zones in the lake, which currently exist.  The nutrient cycle and algal growth is predictable.

The Hoover Dike is nearly 100 years old and while it sit on top of the land (19 ft according to the Army Corps of Engineers), there is concern about it being breached by sloshing or washouts.  Undermining appears in places where the water moves out of the lake flooding nearby property.  So the Corps tries to keep the water level below 15.5 ft.  During the rainy season, or a rainy winter as in 2016, that can become difficult. If the lake is full, that nutrient laden water needs to go somewhere.  The only options are the Caloosahatchee, St. Lucie River or the everglades.  The Everglades is not the answer for untreated water – the upper Everglades has thousands of acres of cattails to testify to the problem with discharges to the Everglades.  So the water gets discharged east and west via the Caloosahatchee and St. Lucie River.

The nutrient and algae laden water manifests as a green slime that washed onto Florida beaches in the Treasure coast and southwest Florida this summer, algae is actually a regular visitor to the coasts.  Unfortunately memories often fail in temporal situations.  The summer 2016 occurrence is reportedly the eighth since 2004, and the most severe since 2013.  The green slime looks bad, can smell bad, kills fish and the 2016 bloom was so large it spread through estuaries on both coasts killing at least one manatee.  One can see if from the air – try this link:

 

https://www.google.com/search?q=algae+florida+aerial&rlz=1C1CAFA_enUS637US637&espv=2&biw=1194&bih=897&tbm=isch&imgil=-znOtKN1py0w1M%253A%253BR2WKOUpBlkwQUM%253Bhttp%25253A%25252F%25252Fabcnews.go.com%25252FUS%25252Ftoxic-algae-blooms-infesting-florida-beaches-putting-damper%25252Fstory%25253Fid%2525253D40326610&source=iu&pf=m&fir=-znOtKN1py0w1M%253A%252CR2WKOUpBlkwQUM%252C_&usg=__KgNR31PY5qxleBf1KST7DWY2mXo%3D&ved=0ahUKEwiqyKK6uJvPAhWr6oMKHdt7C5oQyjcIKg&ei=QNvfV6qoLavVjwTb963QCQ#imgrc=-znOtKN1py0w1M%3A

 

algae

Advertisements

In the last blog I showed what reclaimed wastewater could do for an ecosystem.  Very cool.  But what about for drinking water.  I actually was involved in an indirect potable reuse project several years ago.  The concept was to take wastewater, filter it with sand filters, filter it with microfiltration, reverse osmosis and then hydrogen peroxide and ultraviolet light.  This is what they do in Orange County California when they recharge groundwater, and have been for over 30 years.  Epidemiological studies in the 1990s indicated no increased incidence of disease when that water was withdrawn from the aquifer, and then treated in a drinking water plant before distribution.  So our project was similar – recharge to the Biscayne aquifer in south Florida.   It worked for us.  Total phosphorous was below 10 ppb, TDS was less than 3 mg/L (<1 after RO), and we were able to show 3 log removal of endocrine disruption compounds an d pharmaceuticals.  It worked well.  This is a concept in practice in California.  And will be at some point in south Florida since only the Biscayne aquifer provides sustainable water supplies.  Here is what our system looked like.

IMG_3100

sand filters

IMG_3106

microfiltration

IMG_3085

Reverse osmosis

IMG_3152

ultraviolet/peroxide

This is also the same basic concept Big Springs Texas uses for their direct potable program, demonstrating that the technology is present to treat the water.  A means for continuous monitoring is lacking, but Orange County demonstrates that for indirect potable reuse projects, a well operated plant will not risk the public health.  This is how we do it safely.

 


Speaking of water supply problems, welcome to Flint, Michigan.  There have been a lot of coverage in the news about the troubles in Flint the last couple of months.  However if you read between the lines you see two issues – first this is not new – it is several years old, going back to when the City’s water plant came back on line in May 2014.  Second this was a political/financial issue not a public health issue.  In fact, the political/financial goals appear to have been so overwhelming, that the public health aspects were scarcely considered.  Let’s take a look at why.

Flint’s first water plant was constructed in 1917.  The source was the Flint River.  The second plant was constructed in 1952. Because of declining water quality in the Flint River, the city, in 1962, had plans to build a pipeline from Lake Huron to Flint, but a real estate scandal caused the city commission to abandon the pipeline project in 1964 and instead buy water from the City of Detroit (source:  Lake Huron).  Flint stopped treating its water in 1967, when a pipeline from Detroit was completed. The City was purchasing of almost 100 MGD.  Detroit declared bankruptcy.  The City of Flint was basically bankrupt.  Both had appointed receivers.  Both receivers were told to reduce costs (the finance/business decisions).  The City of Flint has purchased water for years from Detroit as opposed to using their Flint River water plant constructed in 1952.  The Flint WTP has been maintained as a backup to the DWSD system, operating approximately 20 days per year at 11 MGD.

The City of Flint joined the Karegnondi Water Authority (KWA) in 2010.  The KWA consists of a group of local communities that decided to support and fund construction of a raw water pipeline to Lake Huron. The KWA was to provide the City of Flint Water Treatment Plant with source water from Lake Huron. An engineer’s report noted that a Genesee County Drain Commissioner stated that one of the main reasons for pursuing the KWA supply was the reliability of the Detroit supply given the 2003 power blackout that left Flint without water for several days.  Another issue is that Flint no say in the rate increases issued to Flint by Detroit.  Detroit’s bankruptcy may also have been a factor given the likelihood of increased prices.  While discussion were ongoing for several years thereafter, the Detroit Free Press reported a 7-1 vote in favor of the KWA project by Flint’s elected officials in March, 2013.  The actual agreement date was April 2013. The cost of the pipeline was estimated to be $272 million, with Flint’s portion estimated at $81 million.

The City of Detroit objected due to loss of revenues at a time when a receiver was trying to stabilize the city’s finances (in conjunction with the State Treasurer).  In February 2013, the engineering consulting firm of Tucker, Young, Jackson, Tull, Inc. (TYJT), at the request of the State Treasurer, performed an analysis of the water supply options being considered by the City of Flint.  The preliminary investigation evaluated the cost associated with the required improvements to the plant, plus the costs for annual operation and maintenance including labor, utilities, chemicals and residual management.  They indicated that the pipeline cost was likely low and Flint’s obligation could be $25 million higher and that there was less redundancy in the KWA pipeline than in Detroit’s system.  In 2013, the City of Detroit made a final offer to convince Flint to stay on Detroit water with certain concessions.  Flint declined the final Detroit offer. Immediately after Flint declined the offer, Detroit gave Flint notice that their long-standing water agreement would terminate in twelve months, meaning that Flint’s water agreement with Detroit would end in April 2014 but construction of KWA was not expected to be completed until the end of 2016.

It should be noted that between 2011 and 2015, Flint’s finances were controlled by a series of receivers/emergency managers appointed by the Governor.  Cutting costs was a major issue and clearly their directive from the Governor.  Cost are the major issue addressed in the online reports about the issue.  Public health was not.

An engineering firm was hired as the old Flint River plan underwent $7 million in renovations in 2014 to the filters to treat volumes of freshwater for the citizens.  The project was designed to take water from the Flint River for a period of time until a Lake Huron water pipeline was completed.  The City of Flint began using the Flint River as a water source in May of 2014 knowing that treatment would need to be closely watched since the Michigan Department of Environmental Quality in partnership with the U.S. Geological Survey, and the City of Flint Utilities Department conducted a source water assessment and determined the susceptibility of potential contamination as having a very high susceptibility to potential contaminant sources (take a look at this photo and see what you think).

FLint WTP

Flows were designed for 16 MGD. Lime softening, sand filters and disinfection were in place.  Everything sounded great.  But it was not. Immediately, in May and August of 2014, TTHM samples violated the drinking water standards.  This means two things – total organic carbon (TOC) in the water and additional chlorine being added to disinfect and probably reduce color caused by the TOC.  Softening does not remove TOC.  Filtration is not very effective either.  High concentration usually needs granular activated carbon, ion exchange or membranes.  The flint plant had none of these, so the carbon staying in the water.  To address the TTHM issue, chlorine appears to have been reduced as the TTHM issue was in compliance by the next sampling event in Nov 2014.  However, in the interim new violations included a total coliform and E. coli in August and September of 2014, and indication of inadequate disinfection.  That means boil your water and lots of public outcry.  The pH, salinity (salt) and other parameters were reported to be quite different than the Detroit water as well.  A variable river system with upstream agriculture, industry and a high potential for contamination, is not nearly as easy to treat as cold lake water.  These waters are very different as they City was to find.  What this appears to indicate is that the chemistry profile and sampling prior to conversion and startup does not appear to have been fully performed to identify the potential for this to occur or this would have been discovered.  This is now being suggested in the press.

The change in water quality and treatment created other water quality challenges that have resulted in water quality violations. Like most older northern cities, the water distribution system in almost 100 years old. As with many other municipalities at the time, all of the service lines from the cast iron water mains (with lead joints) to end users homes were constructed with lead goosenecks and copper lines.  Utilities have addressed this with additive to prevent corrosion.  In the early 1990s water systems were required to comply with the federal lead and copper rule.  The concept was that on the first draw of water in the morning, the lead concentration should not exceed 0.015 mg/L and copper should not exceed 1.3 mg/L.  Depending on the size of the utility, sampling was to be undertaken twice and a random set of hoses, with the number of samples dependent on the size of the system.  The sampling was required to be performed twice, six months apart (note routine sampling has occurred since then to insure compliance).  Residents were instructed on how to take the samples, and results submitted to regulatory agencies.  If the system came up “hot” for either compound, the utility was required to make adjustments to the treatment process.  Ideally water leaving the plant would have a slightly negative Langlier saturation index (LSI) and would tend to slightly deposit on pipes.  Coupon tests could be conducted to demonstrate this actually occurred.  As they age, the pipes develop a scale that helps prevent leaching. Most utilities tested various products.  Detroit clearly did this and there were no problems.  Flint did not.

The utility I was at was a perfect 100% non-detects the first time were tested.  We had a few detections of lead and copper in samples the second time which really bothered me since the system was newer and we had limited lead in the lines.  I investigated this and found that the polyphosphate had been changed because the County purchasing department found a cheaper product.  I forced them to buy the old stuff, re-ran the tests and was again perfect.  We instructed our purchasing department that saving a few bucks did not protect the public health, but the polyphosphate product did.  Business and cost savings does not trump public health!  Different waters are different, so you have to test and then stay with what works.

Now fast forward to Flint.  They did not do this testing.  The Flint River water was different that Detroit’s.  Salinity, TOC, pH and overall quality differed.  Accommodations were not made to address the problem and the state found no polyphosphates were added to protect the coatings.  Veolia reported that the operations needed changes and operators needed training.  Facilities were needed to address quality concerns (including granular activated carbon filter media).  As a result the City appears to have sent corrosive water into the piping system, which dissolved the scale that had developed over the years, exposing raw metal, and created the leaching issue. Volunteer teams led by Virginia Tech researchers reported found that at least a quarter of Flint households have levels of lead above the federal level of 15 ppb, and as high as 13,200 ppb.  Aging cast-iron pipe compounded the situation, leading to aesthetic issues including taste, odor and discoloration that result from aggressive water (brown water). Once the City started receiving violations, public interest and scrutiny of the drinking water system intensified.

The City Commission reportedly asked the receiver to switch back to Detroit water, but that request was initially rebuffed and the damage to pipes continued.  Finally in October 2015, the water supply was switched back to Detroit and the City started adding additional zinc orthophosphate in December 2015 to facilitate the buildup of the phosphate scale eroded from the pipes by the Flint River water. But that means the pipes were stable, then destabilized, now destabilized again by the switch back.  It will now take some time for the scale to rebuild and to lower lead levels, leaving the residents of Flint at risk because of a business/finance/political decision that had not consideration of public health impacts.  And what is the ultimate fate of the KWA pipeline?

Just when things were starting to look up (?), in January 2016, a hospital in Flint reported that low levels of Legionnaires’ disease bacteria were discovered in the water system and that 10 people have died and another 77 to 85 affected.  From the water system?  A disinfection problem?  Still TOC in the water?  The lawsuits have begun but where does the problem lie?  Let’s look at Walkerton Ontario for guidance in the aftermath of their 2000 incident.

First it is clear that public health was not the primary driver for the decisions.  Treating water is not as simple as cost managers think.  You need to understand what water quality, piping quality and stabilization you have and address the potential issues with new water sources.  Membrane systems are very familiar with these challenges.  Cost cannot be the driver.  The Safe Drinking Water Act does not say cost is a consideration you use to make decisions.  Public health is.  So the initial decision-making appears to have been flawed. Cost was a Walkerton issue – cost cannot be the limiting factor when public health is at risk.

The guidance from consultants or other water managers is unclear.  If the due diligence of engineers as to water quality impacts of the change in waters was not undertaken, the engineering appears to have been flawed.  If the engineer recommended, and has lots of documentation saying testing should be done, but also a file full of accompanying denials from the receivers, another flawed business decision that fails the public health test.  If not, I see a lawsuit coming against the consultants who failed in their duty to protect the public health, safety and welfare.

The politics is a problem.  A poor community must still get water and sewer service. Consultants that can deal with rate and fee issues should be engaged to address fairness and pricing burdens.  Was this done?  Or was cutting costs the only goal?  Unclear.  The politics was a Walkerton issue.

Was the water being treated properly?  Water quality testing would help identify this.  Clearly there were issues with operations.  Telling the state phosphates were used when they were not, appears to be an operations error.  Walkerton also had operations issues as well.  A major concern when public health is at risk.  Veolia came to a similar conclusion.

The state has received its share of blame in the press, but do they deserve it?  The question I have is what does the regulatory staff look like?  Has it been reduced as the state trims its budget?  Are there sufficient resources to insure oversight of water quality?  The lack of provincial resources to monitor water quality was an issue in Walkerton – lack of oversight compounded local issues.  That would then involve the Governor and Legislature.  Politics at work.  Likewise was there pressure applied to make certain decisions?  If so, politics before public heath – a deadly combination.

So many confounding problems, but what is clear is that Flint is an example of why public utilities should be operated with public health at the forefront, not cost or politics.  Neither cost of politics protect the public health.  While we all need finances to pay for our needs, in a utility, money supports the operations, not controls it.  We seems to have that backward. Private entities look sat controlling costs.  Public agencies should look at public service first; cost is down the list.   We need the operations folks to get the funds needed to protect the public health.  And then we need to get the politicians to work with the staff to achieve their needs, not limit resources to cut costs for political gain.  Ask the people in Flint.

So is Flint the next Walkerton?  Will there be a similar investigation by outside unconnected people?  Will the blame be parsed out?  Is there a reasonable plan for the future?  The answers to these questions would provide utilities with a lot of lessons learned and guidance going forward and maybe reset the way we operate our utilities.  Happy to be a part of it if so!


In an interesting twist of fate, USEPA caused a spill on the Animas River when a staffer accidently breached a dike holding back a solution of heavy metals at the Gold King mine because the misjudged the pressure behind the dike.  Pressure?  The spill flowed at 500 gpm (0.7 MGD), spilling yellow water spilled into the river.  Downstream, the plume has travelled through parts of Colorado, New Mexico and Utah, and will ultimately hit Lake Mead.  Officials, residents, and farmers are outraged.  People were told not to drink the water because the yellow water carried at least 200 times more arsenic and 3,500 times more lead than is considered safe for drinking. The conspiracy theorists are out.  The pictures are otherworldly.

colorado-mine-spillRayna Willhite holds a bottle of water she collected form the Animas River north of Durango Colo., on Thursday, August 6th, 2015. About a million gallons of toxic mine waste emptied out of the Gold King Mine north of Silverton that eventually made it into the Animas River. (Jerry McBride/Durango Herald via AP)

0807 colo spill epa-spill-

But they are all missing the point, and the problem.  This is one of hundreds of “legacy disasters” waiting to happen.  We are just surprised when they actually do.  A legacy disaster is one that is predicated on events that have happened in the past, that can impact the future.  In some cases the far past.  There are two big ones that linger over communities all over the west and the southeast – mines and coal.  Now don’t get me wrong, we have used coal and needed metals form mines.  That’s ok.  But the problem is no one has dealt with the effects of mining or coal ash for many years.  And then people are upset.  Why?  We can expect these issues to happen.

One major problem is that both are often located adjacent to or uphill from rivers.  That’s a disaster waiting to happen.  The King Gold mine is just the latest.  We had recent coal ash spills in Kingston, Tennessee (TVA, 2008) and the Dan River in 2014 (Duke Power). The Dan River spill was 30-40,000 tons.  Kingston cleanup has exceeded a billion dollars.  Coal ash is still stored at both places.  Next to rivers.  We had the federal government build ion exchange facilities in Leadville, CO and Idaho Springs, CO to deal with leaking water from mine tailings from the mountains. Examples are in the hundreds.  The photos are of the two coal spills, mine tailings that have been sitting the ground for 140 years in Leadville and one of the stormwater ponds – water is red in Leadville, not yellow.

kingston_coalash POLLUTE-master675 IMG_4803 IMG_6527 (2015_03_08 17_53_48 UTC)

When the disaster does occur, the federal government ends up fixing it, as opposed those responsible who are usually long gone or suddenly bankrupt, so it is no surprise that EPA and other regulatory folks are often very skeptical of mining operations, especially when large amounts of water are involved.  We can predict that a problem will happen, so expensive measures are often required to treat the waste and minimize the potential for damage from spills.  That costs money, but creates jobs.

For those long gone or bankrupt problems, Congress passed the Superfund legislation 40 years ago to provide cleanup funds.  But Congress deleted funding for the program in the early 2000s because they did not want to continue taxing the business community (mines, power plants, etc.).  So EPA uses ARRA funds from 2009.  And funding is down from historical levels, which makes some businesses and local communities happy.  The spectre of Superfund often impacts potential developers and buyers who are concerned about impacts to future residents.  We all remember Love Canals and Erin Brockovich.  Lack of development is “bad.”  They ignore the thousands or jobs and $31 billion in annual economic activity that cleanup creates, but it all about perception.

But squabbling about Superfund ignores the problem.  We continue to stockpile coal ash near rivers and have legacy mine problems.  Instead we should be asking different questions:

WHY are these sites permitted to store ash, tailings, and liquids near water bodies in the first place?  EPA would not be inspecting them if the wastes were not there.

WHY aren’t the current operators of these mines and power plants required to treat and remove the wastes immediately like wastewater operators do?  You cannot have millions of gallons of water, or tons of coal ash appear overnight on a site, which means these potential disasters are allowed to fester for long periods of time.  Coal ash is years.  Mine tailings… well, sometimes hundreds of years.

One resident on the news was reported to have said “Something should be done, something should be done to those who are responsible!”  Let’s start with not storing materials on site, next to rivers.  Let’s get the waste off site immediately and disposed of in a safe manner.  Let’s recover the metals.  Let’s start with Gold King mine.  Or Duke Power.  Or TVA.


A past project I was involved  with involved a look at the feasibility of using wastewater to recharge the Biscayne aquifer In the vicinity of a utility’s potable water supply wells.  The utility was feeling the effects of restrictions on added water supplies, while their wastewater basically unused.  So they wanted a test to see if the wastewater could be cleaned up enough to pump it in the ground for recovery downstream, with the intent of getting added allocations of raw water.  Assuming the water quality issues could be resolved, the increased recovery would solve a number of water resource issues for them, and the cost was not nearly as high as some thought.

So we tested and using sand filters, microfiltration, reverse osmosis, peroxide and ultraviolet light, we were successful in meeting all regulatory criteria for water quality.  The water produced was basically pure water – not constituents in it, and therefore it exceeded all drinking water standards.  We demonstrated that technologically the water CAN be cleaned up.  The only issue is insurance that the treatment will always work – hence multiple barriers and the ground.  This was an indirect potable reuse project and ended because of the 2008 recession and the inability to of current water supply rules to deal with the in/out recovery issues.

The indirect reuse part was the pumping of the water into the ground for later withdrawal as raw water to feed a water treatment plant, as opposed to piping it directly to the head of their water plant.   But recovery of the water can be a challenge and there is a risk that a portion of the injected water is lost.  In severely water limited environments, loss of the supply may not be an acceptable outcome.  Places like Wichita Falls, Texas have instead pursued more aggressive projects that skip the pumping to the ground and go straight into the water plant as raw water.  Technologically the water CAN be treated so it is safe to drink.  The water plant is simply more treatment (added barriers).  So, with direct potable projects, monitoring water quality on a continuous basis maybe the greatest operational challenge, but technologically there is no problem as we demonstrated in our project.

The problem is the public.  You can hear it already – we are drinking “pee” or “poop water” or “drinking toilet water.”  The public relations tasks is a much bigger challenge because those opposed to indirect and direct potable projects can easily make scary public statements.   Overcoming the public relations issue is a problem, but what utilities often fail to convey is that many surface waters are a consolidations of a series of waste flows – agriculture, wastewater plants, etc. by the time they reach the downstream water intake.  Upstream wastewater plants discharge to downstream users.   But the public does not see the connection between upstream discharges and downstream intakes even where laws are in effect that actually require the return of wastewater to support streamflow.  So are rivers not also indirect reuse projects? In truth we have been doing indirect potable reuse for, well ever.

We have relied on conventional water plants for 100+ years to treat surface waters to make the water drinkable.  The problem is we have never educated the public on what the raw waters sources were, and how effective treatment is.  Rather we let the political pundits and others discuss concerns with chemicals like fluoride and chlorine being added to the water as opposed the change in water quality created by treatment plants and the benefits gained by disinfectants.  That message is lost today.  We also ignore the fact that the number one greatest health improvement practice in the 20th century was the introduction of chlorine to water.  Greater than all other medical and vaccine advances (although penicillin and polio vaccines might be a distant second and third above others).   Somehow that fact gets lost in the clutter.

Already the Water Reuse Association and Water Research Foundations have funded 26 projects on direct potable reuse.  Communicating risk is one of the projects.  The reason is to get in front of the issues.  You see, playing defense in football is great and you can sometimes win championships with a good defense (maybe a historically great one, but even they gamble).  Defense does not work that way in public relations.  Offense usually wins. Defenses often crumble or take years to grab hold.

The failure of utilities to play offense, and the failure of elected officials particularly support playing offense is part of the reason we struggle for funds to make upgrades in infrastructure, to perform enough maintenance or to gather sufficient reserves to protect the enterprise today.  And it remains a barrier to tomorrow.   Leadership is what is missing.  It struck me that when looking at leaders, what made them leaders was their ability to facilitate change.  Hence President Obama’s campaign slogan.  But talking about change and making real changes are a little more challenging (as he has seen).  You cannot lead without a good offense, one that conveys the message to the public and one that gets buy-in.  With direct and indirect potable reuse, the water industry has not changed the perception of “toilet water.”  That needs to change.  We need to be frank with our customers.  Their water IS SAFE to drink.  They do not need filters, RO systems, softeners, etc., or buy bottled water, when connected to potable water supplies (private wells, maybe).  We CAN treat wastewater to make it safe, and the technology tis available to make it potable.  . The value they pay for water is low.  Yet in all cases, others, have made in-roads to counter to the industry.  That happened because we play defense.


So I am reading an article in OneEarth, which is a publication of one of the environmental groups.  The pretext is the issues with the movement of hog farm operations into Iowa and the problems it is causing.  They note that the state has cut the regulatory enforcement budget and the number of inspectors while more incidents of contaminated water are found.  The contamination threatens the raw water supply of  downstream water utilities which must do more treatment and monitoring.  Sorry, I had to giggle because I have heard this story before. 

Going back about decade many will recall the “pfiesteria hysteria” as it was called in North Carolina.  The issue was that the Department of Environmental Management had found fish kills where the fish had these weird sores on their bodies, and then a number of people were diagnosed as being infected with the same condition, some of whom died.  The cause was this pfiesteria, which is a flesh-eating organism that enters the nervous system.  Crazy is one of the side effects but it mostly leads to death.  DEM determined that the organism thrived in waters with significant loading from nutrients that they could trace to…..  wait for it…. hog farms!! 

That was not the first time hog farms were implicated in water quality issues, but due to the significant, political influence of the industry, the transgressions were largely ignored due to a lack of enforcement personnel.  Actually when I was in North Carolina we had a hog farm upstream of our wastewater plant.  Periodically the DEM would test the waters downstream of our plant and find bacteria counts to high and they would want to tag us for the violation.  But we never had any indication of violations at our plant (which we tested daily and reported).  You can’t “make” nutrients appear out of thin air – they come from somewhere.  We told DEM that it was a hog farm that periodically dumped the manure pit n the river when it got full.  No treatment was going on.  Then hog farms exploded in North Carolina which led the pfiesteria event.  Finally the State decided enough was enough and imposed a lot of regulations on hog farms which magically …. moved to Iowa where there are no regulations in place.  I guess there is nothing like a good crisis that kills a few people to get past the political influence of the lobbyists (unless you are the NRA).

But here’s the problem for Iowa, which is what North Carolina found.  The regulations actually are in place.  The Clean Water Act prohibits the contribution of pollutants that will impair the quality of water bodies.  Clearly hog farm effluent clearly falls into this category, but the historical focus of the Clean water Act has been on wastewater treatment plants, and lately stormwater, but not agriculture, which is largely exempted in many, rural states.  Yet agriculture is and has always been a major contributor to water quality degradation in watershed for two reasons.  First they disturb the earth by plowing and planting, so rainfall leads to runoff of material (silt) into streams.  With that runoff is herbicides, pesticides, fertilizer (nutrients), and of course in animal husbandry or CAFO operations, bacteria and other pathogens.  Do not forget that the two most significant examples of water quality impacts on water utilities, Milwaukee and Walkerton, were both agricultural runoff problems.

Agricultural runoff impacts the downstream users which are typically developed areas which use the streams for water supply.  So agricultural practices move land based contaminants to the utility intake, which means more treatment cost to customers.  Sometimes these contaminants are a significant health risk.  It took a significant incident for North Carolina to act. The question is what will it take for Iowa to act, and once they do where do the hog farms go next? 

What needs to happen is that the hog farms develop the treatment systems needed to clean up their act.  It would be great for them to pay the cost but history says they won’t.  So maybe the political leadership needs to participate in that solution to maintain the employment base, and maybe utilities and other source water protection agencies, and there are many of them like the US Water Endowment, can help as well.  Politicians want jobs, while ratepayers do not want to pay all the costs.  A collaborative solution seems reasonable, so we will see what Iowa comes up with.  


Sequestration is the word we are all using to explain the failure of the Congress to put together a budget with appropriate revenues and expenditures.  Congress can’t figure out how to reach a budget agreement, so the federal government set itself up for mandatory cuts in services. I had a recent grant sequestered, then cancelled.  It really could have helped a local community with long-term water supply and quality problems identify adaptation and mitigation strategies fo rites future.  Minor money for Washington, but a big deal down here.  Likewise I have spent the last 6 months on a subcommittee for USGS that is focusing on what could be cut from USGS.  That means less testing water quality, water levels in groundwater, stream gauges and less evaluation of results.  Most of the water issues USGS looks at crosses local and even state lines.  Since we all rely on water, this is at national concern.  Precisely when we need the information most, we may be getting less.  Expect to start seeing more sequestration issues. 

 

 

The problem is that the biggest expenses, social security and debt, cannot be cut without major backlash in the financial and voter markets.  So the cuts come from the smaller accounts – things like the federal share of state revolving funds, water research and water/wastewater programs.  The community and tribal assistance account was slashed $210 million while the environmental program budget was cut $135 million. While some may be cheering EPA cutbacks, the reality for water and wastewater users is less federal assistance to our industry.  That means more of the onus is on us, and on our customers.  The  unintended consequences of the failure of Congress to act….

%d bloggers like this: