Tag Archives: politics

Welcome to Kansas, the bastion of how not to run a state, but claim things are just dandy.  I noted in a prior blog that Kansas has no reserves.  And apparently a $350 million deficit in 2016, a continuing trend for a number of years now.  And bigger deficits to come.  Kansas is the poster child of why cutting taxes a lot does not work.

How did they get here?  The state governor and legislature decided that cutting taxes spurs economic growth.  So if you cut a lot of taxes, you get lots of growth. They cite the Laffer curve, a  totally discredited economic tool drawn on the back of a napkin  by Arthur Laffer at a 1974 dinner to argue why Gerald Ford should not raise taxes.  On the face of it it makes no sense but that has not stopped supply side politicians from using it for nearly 40 years  to cut taxes.  The problem, it is wrong.

Cutting taxes does not spur enough economic growth to make up for the loss in taxes when you go down the Kansas role.  If you s cut them too much, it is really hard to raise them if you run short.  The result is that  economic growth in most of Kansas will be stunted for years due to the lack of investment in Kansans.  Now you would think that Kansans would be up in arms about the poor stewardship by elected officials. But no.  See if you get constant bad news, just stop reporting revenues and deficits.  No news is good news right?  Welcome to Kansas!

The troubling aspect of that is that Governing magazine reports that many state are likely to see less revenue in 2017 vs 2016.  Governing‘s analysis of projected 2017 budget data from the National Association of State Budget Officers shows shows states now have a median 4.9 percent of annual expenditures saved for the fiscal year, down from 5.1 percent the previous year.  Illinois, Nevada, New Jersey and North Dakota have no reserves as of 2017.  They add to Kansas, Oklahoma, Arkansas, and Montana who had no reserves last year.  And Alaska that is burning though theirs.  Economic and tax policies are to blame.  The Kansas solution to cut taxes to create economic growth has not worked.  The state continues to get farther behind and it is becoming harder to pretend all is well.  Having no reserves is a crazy bad idea.  It is hard to explain just how crazy bad this idea is – it means that if a negative economic issue occurs, these states are in huge trouble unless they start cutting education and other essential services.  The best way to get out of a budget hole is not cutting education – the one thing needed to dig out and attract new economic activity.  Clearly these officials did not learn from 2008-2011 when there reserves were depleted to address the economic downturn. That makes no sense and dooms their residents to a repeat of 2009/2010, only worse.


As 2017 gets rolling, we are set to swear in a new President.  The politics are already interesting.  The question is what will change, when and how.  For example there has been an ongoing discussion of infrastructure bills, but aside from WITAF approval, little clear direction has been forthcoming.  We only know that private sector participation will be encouraged.  Of course virtually all projects constructed in the public sector are constructed by private contractors, so how/if that will change is unclear.

It is also unclear which industries will be affected.  There are already comments about not pursuing he renewable energy opportunities  – China sees 13 million jobs in the coming 5 years as their economy cranks up to meet the needs.  They are contributing $360 billion to enhance this sector.  I have previously blogged about potential opportunities in the US to grow renewables.  But they are just like recycling in the 1970s.  Recycling needed to be subsidized until such time as the facilities and processes were in place to make it competitive.  Now for steel and aluminum, it is less costly than virgin iron or bauxite.  That has several benefits to the economy and the environment.

I have previously suggested that those who do the research, develop the solutions and control the patents tend to rule the economy.  The US did in throughout the 20th century.  Energy is the 21st century opportunity and I would hope we don’t cede that elsewhere due to politics.  13 million jobs would really help places in rural America and place like Detroit and Flint which have the workers.  It may be that instead of the federal government doing much in this arena, the state and local officials will lead the charge.  California has been successful to a degree in this regard.  Let’s see if making money will “trump” the politics of oil. That would be good for a lot of local governments that have workers and factories, but not jobs.  That would help people like those in Flint.  And it would help their utilities.  Let’s work on this with our local officials

Every water body will be different but in southeast Florida there are a couple options for Lake Okeechobee’s waters.  One option has been in discussion for years – buy back the EAA lands and restore the Everglades flow.  That has two benefits – improved water quality, and less potential for east-west releases.  The downside is cost.  But the sugar industry knows that the muck layer is decreasing and there are plans to develop the EAA into hundreds of thousands of housing units.  That was not the intention in the 1940s when the EAA was created, but trying to stop someone from developing land, especially when the lake communities are challenged economically, is difficult.  Buying the land would remove it from production, but decrease tax revenues.  And it would need to be managed with no guarantee that it would cleaned up quickly.

The alternative?  The South Florida Sun-Sentinel had a front page article that is a little scary.  The figure below is reproduced from that article.  The discussion was if there is no conservation/public purchase of land, Florida may look very different.  The impact of not buying the land is development.  More people.  More taxes.  More stormwater.  The fertilizer does not go away – it now fertilizes lawns and golf courses.  Add wastewater, and human activities.  We find that urban living and farming can have similar impacts from a nutrient perspective.  So development may exacerbate the problem and given that our modeling indicates that sea level rise imperils inland communities from groundwater, this is not a solution to coastal risk.  Given limitations with local governments inland, it may create a larger crisis.  All there things need discussion, but the question is – will the algal issues on the coast improve?

graphic-of-development worse?

The most important parameters regulating algal growth are nutrient quantity and quality, light, pH, turbulence, salinity and temperature. Light is the most limiting factor for algal growth, followed by nitrogen and phosphorus limitations, but other nutrients are required including carbon. Biomass is usually measured by the amount of chlorophyll a in the water column.  Water temperature influences the metabolic and reproductive rates of algae. Most species grow best at a salinity that is slightly lower than that of their native habitat,  The pH range for most cultured algal species is between 7 and 9, with the optimum range being 8.2-8.7. Through photosynthesis, algae produce oxygen in excess of respiratory requirements during daylight hours. Conversely, during low light or nighttime periods algae respire (consume) dissolved oxygen, sometimes depleting water column concentrations. Thus, high algae concentrations may lead to low dissolved oxygen concentrations.

A common solution for algae is copper sulfate.  Copper Sulfate works to kill the algae, but when it dies, it settles to the bottom of the water body where it becomes a carbon source for bacteria and future algae.  One will often see shallow ponds with rising algae.  But there is significant concern about copper in coastal water bodies.  Copper is toxic to marine organisms so USEPA and other regulatory bodies are considering the limits on copper use.  Such a limitation would severely limit options in dealing with algal blooms near coastal waters.

Mixing is necessary to prevent sedimentation of the algae, to ensure that all cells of the population are equally exposed to the light and nutrients.  So oxygenation can help (it also mixes the water.  The depth of south Florida water bodies is problematic (shallow and therefore warmer than normal).  But oxygen will help microorganisms on the bottom consume the carbon source on the bottom, which might slow algal growth.  Analysis is ongoing.

Two other conditions work against controlling blue-green algae outbreaks: climate change and political/regulatory decision-making.  Lake Okeechobee has routine algal blooms from the nutrients introduced from agriculture and runoff around the lake, which encouraged an artificial eutrophication of the lake years ago.  It continues today.  Warmer weather will encourage the algal blooms in the future.  The decisions to discharge the water without treatment is a political one.  From a regulatory perspective, algae is seen as a nuisance issue, not a public health or environmental issue.  But algal blooms consume oxygen and kill fish, so the ecosystem impact is considerable – it is not a nuisance .

The term algae encompass a variety of simple structures, from single-celled phytoplankton floating in the water, to large seaweeds.  Algae can be single-celled, filamentous or plant-like, anchored to the bottom.  Algae are aquatic, plant-like organisms – phytoplankton.  Phytoplankton provides the basis for the whole marine food chain. Phytoplankton need light to photosynthesize so will therefore float near the top of the water, where sunlight reaches it.  Light is the most limiting factor for algal growth, followed by nitrogen and phosphorus limitations), but other nutrients are required including carbon, silica, and other micronutrients. These microscopic organisms are common in coastal areas.  They proliferate through cell division.

A natural progression occurs in many water bodies, from diatoms, to green algae to yellow/brown to blue-green, with time and temperature.  The environment is important.  Southern waters are characterized as being slow moving, and warm.  This encourages cyanobacteria – or blue green algae.  The introduction of nutrients is particularly difficult as it accelerates the formation of the blue green algae. Blue-green algae creates the bright green color, but is actually an end-of-progression organism.

If cells are present in the water mass in large numbers an algal bloom occurs.  An algal bloom is simply a rapid increase in the population of algae in an aquatic system. Blooms may occur in freshwater as well as marine environments. Colors observed are green, bright green, brown, yellowish-brown, or red, although typically only one or a few phytoplankton species are involved and some blooms may be recognized by discoloration of the water resulting from the high density of pigmented cells.

So the desire for development created the idea to drain the swamp, which led to exposure of dark, productive soil that led to farming, which lead to fertilizers, which led to too much water, and water pollution leading to algae.  A nice, predictable progression created by people.  So what is the solution?

We have all seen the stories about land in the Everglades agricultural Area thissummer.  I was asked to give a presentation at a national conference in Orlando recently about water management in Florida.  It was a fun paper and most of the people there were not from Florida, so it was useful for them to understand the land of water.  Florida has always been a land shaped by water.  Initially it was too much, which frustrated federal soldiers trying to hunt down Native Americans in the 1830s.  In 1881, real estate developer Hamilton Disston first tried to drain the swamps with canals.  He was not successful, but Henry Flagler came through a decade later and constructed the east coast railroad in the 1890s.  It is still there, 2 miles off the coast, on the high ground.  However water limited development so in 1904, Napoleon Bonaparte Broward campaigned to drain the everglades.   Broward’s efforts initiated the first land boom in Florida, although it was interrupted in the 1920s by hurricanes (1926 and 1928) that sloshed water out of Lake Okeechobee killing people and severely damaging property in Miami and around Lake Okeechobee.  A dike was built (the Hover dike – it is still there). However, an extended drought occurred in the 1930s.  With the dike preventing water from leaving Lake Okeechobee, the Everglades became parched. Peat turned to dust, and saltwater entered Miami’s wells. When the city brought in an expert to investigate, he found that the water in the Everglades was the recharge area for the Biscayne aquifer, the City’s water supply.  Hence water from the lake needed to move south.

Resiliency has always been one of Florida’s best attributes.  So while the hurricanes created a lot of damage, it was only a decade or two later before the boom returned.  But in the late 1940s, additional hurricanes hit Florida, causing damage and flooding from Lake Okeechobee prompting Congress to direct the Army Corps of Engineers to build 1800 miles of canals, dozens of pump stations and other structures to drain the area south of Lake Okeechobee.  It is truly one of the great wonders of the world – they drained half a state by lowering the groundwater table by gravity canals. To improve resiliency, between 1952 and 1954, the Corps,  in cooperation with the state of Florida, built a levee 100 miles long between the eastern Everglades and the developing coastal area of southeast Florida to prevent the swamp from impacting the area primed for development.

As a part of the canal construction after 1940, 470,000 acres of the Everglades was set aside for farming on the south side of Lake Okeechobee and designated as the Everglades Agricultural Area (EAA).  However water is inconsistent, so there are ongoing flood/drought cycles in agriculture.   Irrigation in the EAA is fed by a series of canals that are connected to larger ones through which water is pumped in or out depending on the needs of the sugar cane and vegetables, the predominant crops.  Hence water is pumped out of the EAA, laden with nutrients.  Backpumping to Lake Okeechobee and pumping the water conservation areas was a practice used to address the flooding problem.

There was an initial benefit to Lake Okeechobee receiving nutrients.  Older folks will recall that in the 1980s , the lake was the prime place for catching lunker bass.  That was because the lake was traditionally nutrient poor.  That changed with the backpumping which stimulated the biosystem productivity.  More production led to more biota and more large fish.  This works as long as the system is in balance e- i.e. the nutrients need to be growth limiting at the lower end of the food chain.  Otherwise the runaway nutrients overwhelm the natural production and eutrophication results.  Lake Okeechobee is a runaway system – the algae now overwhelm the rest of the biota.  Lunker bass have been gone for 20 years.

The backpumped water is usually low in oxygen and high in phosphorus and nitrogen, which triggers algal progressions, leading to toxic blue-green algae blooms and threaten lake drinking water supplies.  Think Toledo. Prolonged back pumping can lead to dead zones in the lake, which currently exist.  The nutrient cycle and algal growth is predictable.

The Hoover Dike is nearly 100 years old and while it sit on top of the land (19 ft according to the Army Corps of Engineers), there is concern about it being breached by sloshing or washouts.  Undermining appears in places where the water moves out of the lake flooding nearby property.  So the Corps tries to keep the water level below 15.5 ft.  During the rainy season, or a rainy winter as in 2016, that can become difficult. If the lake is full, that nutrient laden water needs to go somewhere.  The only options are the Caloosahatchee, St. Lucie River or the everglades.  The Everglades is not the answer for untreated water – the upper Everglades has thousands of acres of cattails to testify to the problem with discharges to the Everglades.  So the water gets discharged east and west via the Caloosahatchee and St. Lucie River.

The nutrient and algae laden water manifests as a green slime that washed onto Florida beaches in the Treasure coast and southwest Florida this summer, algae is actually a regular visitor to the coasts.  Unfortunately memories often fail in temporal situations.  The summer 2016 occurrence is reportedly the eighth since 2004, and the most severe since 2013.  The green slime looks bad, can smell bad, kills fish and the 2016 bloom was so large it spread through estuaries on both coasts killing at least one manatee.  One can see if from the air – try this link:



The reliability of the assets within the area of interest starts with the design process in the asset management plan. Decision-making dictates how the assets will be maintained and effective means to assure the maximum return on investments. Through condition assessment, the probability of failure can be estimated. Assets can also fail due to a growing area that may contribute to exceeding its maximum capacity. Operation and maintenance of the assets are important in reassuring a longer life span as well as getting the most out of the money to be spent. Prioritizing the assets by a defined system will allow for the community to see what areas are most susceptible to vulnerability/failure, which assets need the most attention due to their condition, and where the critical assets are located in relation to major public areas (hospitals, schools, etc.) with a high population.

So what happens when conditions change?  Let’s say sea levels are rising and your land is low.  What would the potential costs be to address this?  Better yet, what happens if it rains? We looked at one south Florida community and the flood stage for each based on 3 storm events: the 1:10 used by FDOT (Assumes 2.75 inches in 24 hours), the Florida Building Code event that includes a 5 in in one hour event (7 in in 24 hrs), and the 3 day 25 year event (9.5-11 inches).

Of no surprise is that the flooding increases as rainfall increases.  Subsequent runs assumed revisions based on sea level rise. The current condition, 1, 2 and 3 ft sea level rise scenarios were run at the 99 percentile groundwater and tidal dates and levels.  Tables 2-5 depict the flood stage results for each scenarios.  The final task was designed to involve the development of scenarios whereby a toolbox options are utilized to address flooding in the community.  Scenarios were to be developed to identify vulnerabilities and cost effectiveness as discussed previously.

The modeling results were then evaluated based of the accompanying infrastructure that is typically associated with same.  A summary of the timelines and expected risk reductions were noted in the tables associated with storm and SLR scenarios.  This task was to create the costs for the recommended improvements and a schedule for upgrading infrastructure will be developed in conjunction with staff.  Two issues arise.  First, the community needs to define which event they are planning to address and the timelines as the costs vary form an initial need of $30 million to over $300 million long-term.  Figure 1 shows how these costs rise with respect to time.  The long-term needs of $5 million per 100 acres matches with a prior effort in Palm Beach County.

SLR costs

Figure 1  Summary of Costs over the 3 ft of potential sea level Rise by 2011, under the 3 storm planning concepts.


“Or is running a local government like s business killing it?”

I had an interesting conversation at a conference recently.  The people I was talking to were advanced in their careers and the discussion moved toward the outlook on management in public settings. Once upon a time, most public works and utility managers were civil engineers, but often they were criticized because they were focused on the engineering aspects as opposed to the people aspects of the community.  Their focus was public health and making sure things operated correctly.  Most did whatever was needed to accomplish that.

This led to schools of public administration, which actually started educating some of those same engineers about management of large public organizations, organizational theory, human resource, accounting and planning  I did all that myself at UNC-Chapel Hill.  The goal was to understand finances, people, community outreach, the need to engage citizens and as well as public service.  The outcomes were providing good service.  That however tends to cost a little more than operations although there are opportunities to be a bit entrepreneurial.

So back to the people in the conversation.  They noted that sometime in the 1980s or early 1990s the MPAs were being replaced by MBAs as politicians were focusing on operating “like a business.”  Looking at the MBAs out there, the comment was that business schools do not focus on service, but profits to shareholders, and the training is to cut unproductive pieces that detract from the bottom line.   Hence investments do not get made if the payback is not immediate.  Service is not a priority unless it helps the bottom line.  In a monopoly (like a local government), there are no other option, so service becomes a lessor priority.

So it brought up an interesting, but unanswerable question for now: has the move to more business trained people in government created some of the ills we see?  The discussion included the following questions/observations (summarized here):

  1. Many water and sewer utilities are putting a lot of time and effort into customer service and outreach now after years of criticism for failing to communicate with customers. That appears symptomatic of the monopoly business model.
  2. Our investments in infrastructure decreased significantly after 1980, and many business people focus on payback – so if the investment does not payback quickly, they do not pursue them. How does that impact infrastructure investments which rarely pay back quickly (Note that I have heard this argument from several utility directors with business backgrounds in very recent years, so the comments are not unfounded).  It does beg the questions of whether the business focus compounds our current infrastructure problems.
  3. Likewise maintenance often gets cut as budgets are matched to revenues as opposed to revenues matched to costs, another business principle. Run to failure is a business model, not a public sector model. Utilities can increase rates and we note that phones, cable television, and computer access have all increased in costs at a far faster rate that water and sewer utilities.

Interestingly though was the one business piece that was missing:  Marketing the value of the product (which is different than customer service).  Marketing water seems foreign to the business manager in the public sector.  The question arising there is whether that is a political pressure as opposed to a forgotten part of the education.

I would love to hear some thoughts…


photo 2A week or so ago, on a Sunday afternoon, I flew across Middle America to Colorado for a meeting and was again struck by the crop circles that dominate the landscape west of the Mississippi River.  They are everywhere and are a clear sign of unsustainable groundwater use.  I recently participated in a fly in event for National Groundwater Association in Washington DC, where several speakers, including myself, talked about dwindling groundwater levels and the impact of agriculture, power and economies.  The impact is significant. Dr. Leonard Konikow, a recently retired USGS scientist, noted that he thinks a portion of sea level rise is caused by groundwater running off agriculture and from utilities and making its way to the ocean. He indicated that 5% of SLR each year was caused by groundwater runoff, and has upped his estimates in the past 10 years to 13%.  This is because it is far easier for water to runoff the land than seep into rocks, especially deep formations that may take many years to reach the aquifer.  And since ET can reach 4 ft below the surface, many of the western, dry, hot areas lose most of this water during the summer months.  Hence the impact to agriculture, and the accompanying local communities and their economies will be significant.

It should be noted that the US is a major exported of food to much of the world, including China, so the impact on our long-term economic trade may be significant.  Fortunately the power industry has historically preferred surface waters, but must as power demands increase, they have begun to explore groundwater in rural areas without access to surface waters.  Keep in mind that air-cooled power plants are 25% or more less efficient than water cooled systems and many of these communities lack sufficient reusable water supplied to substitute for cooling.  Hence the projection is a long term negative impact on all of us.

So the question is why isn’t the federal government talking more about this problem?  Is it fear of riling up local political officials that see growth at all costs as necessary?  It is private rights arguments that may spawn lawsuits?  Is it a lack of interest in long-term?  Or the idea that “we have always found a way”. Or is it just buried heads in the sand, leaving the next generation to deal with the problem?  A big issue, yet we do not talk enough about it.  Maybe this is not a surprise since we have not gotten very far with the discussion of limited oil, precious metals, phosphorous or other materials, and unlike them, water appears to be renewable globally.  But water is location specific.  If you have it, great.  If you lose it, a problem.  There are several recent journal articles that make the argument that much of the strife in the Middle East and Africa is water depletion related: water depletion kills local economies.  So we need to ask –what happens if we ignore the looming crisis?  Do we create more “Bundy-type” actions in the rural, dry west because they already lack water?  I suggest it is a cause for concern.

%d bloggers like this: