Archive

Tag Archives: Water supplies


A new GAO report suggests that the short and long-term future for state and local revenues may be more difficult that currently anticipated, despite the economy recovering in many places.  For most of the 1990s and the mid 2000s, many states and local governments operated with surpluses, or could have.  Many elected officials, like those in Florida (or Congress in 2001), chose to reduce tax rates to balance the budget as opposed to restocking reserve funds.  When property values plummented and tourism and consumer buying diminished, the taxes related to all three plummented as well.  None have yet returned to their pre-2008 levels.  In fact, the property values lag so badly, it may be 10-20 years in many jurisdictions before they return to their former selves.  In South Florida’s suddenly “hot” real estate market, local officials are raving about the 28% increase in property values in 2012/2013.  Sounds great until you realize that they need to increase 100% to return to pre-2008 levels.  Even in a hot market it may be over 5 years to recover.  So property values are not a short-term problem.  Some communities may never recover.  So much for saving for that rainy day.

It should be plain to all of us that the failure of those in power to stockpile reserves caused many governments to spend down what limited reserves they had in the past 5 years as a means to avoid the hard and unpopular decision – raising taxes to collect the same revenues as before the mid-2000s cuts.  Now the lack of reserves creates an issue going forward – as costs increase faster than revenues, there are no reserves to tap into.  It is a problem that just keeps on giving.  The failure to address the root cause – the failure to set revenues collections at an appropriate level and accumulate surpluses when you are lucky enough to get them.  Unfortunately the political discussion keeps going back to keeping costs down, but cuts in costs means cuts in services.  Sounds great to cut the Plantation trolley because of budget needs, but what about those citizens that rely on the trolley?  Or the businesses it serves.  Cutting Meals on Wheels which primarily serves shut-ins is a great idea in Broward County with a hue population of elderly that find it difficult to get out of the condo?  And does it really make much impact on the overall budget?  Not really.  There are cosmetic issues.  There a more symptomatic issue here?

GAO points to health care as a cost increasing faster than the rate of increase in revenues, but the latest data seems to indicate that the rate of growth may be less than projected by those opposed to the new Health Care laws.  Underfunded pensions are also a potential area of concern, but cutting employees is not the solution for that as outlined in a prior blog.  Cutting employees cuts the funding for pensions which guarantees future problems.  So that idea actually works against the goal of shoring up the problem.  So, no that is not the answer.  We are clearly paying for the sins of 15 years ago when we were awash with funds, but decided to cut or public “income.”  Who does that anyway?!?!

I never like Chicken Little, because he never had a solution for the problem.  Part 2 will outline some thoughts…


My apologies for being off line for a couple weeks.  We finished the summer semester the first week of August, and are now gearing up for the Fall semester.  Lots to do, and proposals and other projects to complete before the plunge.  The most interesting project this summer has been the conclusion of a national survey of aquifer storage and recovery (ASR) projects.  The concept of ASR wells is to store water underground until you need it later.  If you have a utility with limited water supplies, or if you have high demands a certain part of the year but not the rest, ASR has been touted as a solution.  Storage underground eliminates the evaporation losses, but the question has always been can you get the water back.  The survey, which will be fully published next year, shows 204 sites.  It shows only about a third are operational projects and over 50 that have been functionally abandoned.  The reasons for abandoning them include metals leaching(mostly a Florida problem), the inability to recovery the water (particularly a problem in brackish aquifers), lack of capacity and trihalomethanes (a regulatory issue in a couple states).  ASR was successful with limited injection rates (700 gpm) and where the aquifer was denuddded (South Carolina).  Growth seems to be in the west after a lot of effort in the southeast.  The road forward should prove interesting.  With completion of the study it is hoped that more data can be gleaned to indicate the factors that make ASR project successful, thereby increasing the rate of success for the future. 


Close UP Radio # 4

Here’s the 4th in a series of radio shows I did on line.  These are topics discussed:

Desalination is often argued as a water supply option.  But the costs for power are significant.  Power requires water.  Water treatment requires power, we can’t make decisions in a vacuum.

We do have ongoing discussions about indirect and direct potable reuse of wastewater – ie toilet to tap.  There are regulatory and public perception barriers, but in truth we do this in rivers every day

It is hard to define that term  sustainability, and it depends on who you are and what your issues are.  But water is a medium of social change as well as economic development.  Too often we look at short term solutions, which frustrate long-term potential.  Klamath River OR is an example.  

Enjoy


A recent Manhatten Institute for Policy Research report titled “America’s Growth Corridor: The Key to National Revisal” noted that the future economy in the US will tend to growth in certain corridors, which echos a prior report that identified “super-regions” where population, manufacturing, education and economic growth were likely to be concentrated. Both reports suggest that the super-regions will prosper, with the rest of the country lagging behind. The seven high growth areas in the Mnahatten Institute report are the Pacific Coast, the Northeast, the Front Range, Great Lakes, the southeast/piedmont, Florida/Gulf Coast, and Texas/southern plains. This new report focuses more on the politics of the region, noting that each region is politically fairly consistent internally, indicating there is more than one way to do business. The current business climate, driven primarily by energy favors the Plains, with the southeast starting to import jobs from Japan and Korean as a result of low wage rates. The report goes on to draw a series of political conclusions about business climates and the politics of why growth is occurring in certain areas. But let’s look at a different view of the report. Each of these regions has had “ it’s day in the sun” so to speak, and some a couple of days, like California. Business cycles are cyclical so shifts in growth corridors is not unexpected. However there are some potential limiting issues that are not addressed in the report that are of significant interest or concern.

First, where is the water? Texas and the Plains have significant water limitations, as does much of the southeast. Trying to build an economy when you lack a major resource becomes difficult. That is why the Northeast, Great Lakes and later the Pacific grew earlier than the south, mountain and Gulf states. The Northeast and Great Lakes had water for industrial use and transport of goods, a real key historically for industry. Those regions also had (and still have) better embedded transportation facilities (rail, roads, airports).

The next question is where is the power coming from? The answer that will be given is that the Plains states and Texas have created 40 % of the jobs in the energy sector in the past 4 years so that is where the energy comes from, but having energy and being able to convert it efficiently to power that is useful to people or industry is a different issue. You need water to cool natural gas plants, unless you want to sacrifice a lot of efficiency. Back to water again. Moving the gas to other parts of the country to convert coal or oil plants to natural gas would work, but getting the electricity back does not come without 6% losses and a real need to make major improvements to the electrical grid. Not a small job.

So while the Manhatten Institute reprort suggest that all seven corridors will grow, but that the southern corridors are growing faster, the sustainability of this growth is at question. I recall a similar prediction when I graduated from college in the early 1980s, when the jobs for engineers were limited to the energy fields in Texas and Louisiana and the prediction was that al the industrial growth would be in the south. And then Silicon Valley happened, and then the housing boom in California, Nevada and Florida happened, and a few things in between. Oh and that energy economy collapsed in the late 1980s …. You get the picture. This is not to say that some marketing the power, water and transportation benefits of the historical industrial areas of the north are not needed – they are, but the fact is that there is significant available water, power, transportation and people capacity that is unused. If I am an industry, I may want to look at the power/water issue a little more closely.


In the past week I have had the opportunity to experience the extremes with water – heavy rains/tropical weather in SE Florida, and dry weather in Denver at America Water Works Association’s Annual Conferences and Exposition. Two months ago with was snowing in Denver and there had been limited rain in SE Florida. Six months ago we were both dry and there was significant concern about drought in both places. How quickly fortunes change and the associated attitudes as well. It is part of a perception problem – looking at the near term – instant gratification, as opposed the long-term consequences. In truth neither set of conditions is historically different or should have created major panic or much shift in attitudes, but it is the potential to predict conditions that require the water manager’s scrutiny. We have all become risk managers.

Managing risk is not in the job description of most water and sewer personnel (risk managers aside, and they are focused on liability risks from incidents caused by or incurred by the utility like accidents, not water supply risks). We spend a lot of effort on the engineering, operation and business side, but less on planning or risk/vulnerability assessments. EPA has required vulnerability assessments in the past, but having seen some of those exercises, most are fairly superficial and many put on a shelf and forgotten. I have had clients ask me if I still had copies because they did not. Clearly we need a renewed commitment to vulnerability assessment.

Vulnerability starts with water supplies. Groundwater is particularly tricky. A new USGS study reports significant decreases in water levels in many aquifers across the US, especially confined aquifers in the west. That situation is not improving, and the situation will not correct itself. Loss of your water supply is a huge vulnerability for a community. Finding a new supply is not nearly as simple as it sounds or as many are led to believe. Confined aquifers do not recharge quickly and therefore have finite amounts of water in them. Remove too much water and all too often land subsidence occurs, which means the aquifer collapses and will never hold the same amount of water. USGS has mapped this and it matches up well with the drawn down aquifers. More data needs to be collected, but Congress is looking to cut USGS funds for such purposes, just when conditions suggest the data is needed most.

Many watershed basins and many aquifers are over allocated and overdrawn, and not just in the west. New England and the Carolinas have examples. Overallocation means competition for water will increase with time and it will be utilities that everyone will look at to solve the problem. Afterall the utilities have money as opposed to agriculture and other users, right? To protect themselves, water utility managers will need to look beyond their “slice of the pie” to start discussions on the holistic benefits to water users throughout the watershed, which will extend to understanding economic and social impacts of water use decisions. It is not just about us, and paradigm shift that is coming and one that we as an industry need to be the leading edge for. Our use impacts others and vice versa. Every basin wants to grow and prosper, but decisions today may reduce our future potential. Klamath River is a great example of misallocated water priorities. The biggest potential economy in the basin is Salmon ($5B/yr), followed by tourism ($750 M and growing), which relies on fishing and hiking. But agriculture ($0.2 B/yr) get the water first. Then power, which warms the water (salmon like cold water). Then a few people (a few 100,000 at the most in the basin). The result, the salmon industry gets reduced to $50 M/yr. Now how could we create more jobs, which would result in more income and a bigger economy? The easy answer is encourage the salmon industry, but that doesn’t sit well with the other, smaller users that will become more vulnerable to losses.

I suggest that to harden our water future in any given basin, we need to start looking a little more holistically at the future. This type of analysis is clearly not in the job description of the utility or its managers, utility managers may have the best access to technical expertise and information. As a result to protect their interests and manage risk, we may need to shift that paradigm and become holistic water managers.


The concept of horizontal wells arises from riverbank filtration concepts.  Riverbank filtration has been practiced for nearly 200 year in Europe, where the concept was to remove debris form polluted waters by drawing through the banks of rivers.  Much of the concepts for groundwater flow are related to the filtration ability of water to move through a porous media.  The concept was to dig trenches along the river and draw water from the trenches as opposed to the polluted rivers.  The concept worked relatively well.  The result is an abundant, dependable supply of high-quality water with a constant temperature, low turbidity, and low levels of undesirable constituents such as viruses and bacteria. Riverbank filtration also provides an additional barrier to reduce precursors that might form disinfection byproducts during treatment.

Now let’s look at this from another perspective, and we’ll pick on southeast Florida as is provides a great case study.  Sea level rise will inundate coastal property, both via coastal flooding and from a rise in groundwater. Since most stormwater drainage depends on gravity flow, drainage capacity will suffer as sea level rises reducing the head differential between interior surface waters and tide. Saltwater intrusion will be exacerbated. Furthermore, reduced soil storage capacity, groundwater flow and stormwater drainage capacity will contribute to increased flooding during heavy rain events in low-lying areas.  In low lying areas, current practices like exfiltration trenches will become impractical, as will dry retention will become wet retention.

Stormwater utilities will be faced with dramatic, currently unanticipated increases in capital expenditures and operating costs, and time will be needed for planning, design, securing permits and compliance. Additional local pumping stations on secondary canals will be needed to supplant the storm drainage system in order to prevent unacceptable ponding. Design capacities of these stations will depend on local rain patterns, drainage basin size and secondary canal system design.  Many will operate continuously, which means ongoing operations will increase substantially. Hundreds of pumping stations may be needed in some communities.

Permits will be a major challenge due to contaminants in the runoff as regulated by MS 4 Stormwater permits, and the inability to treat this water under the current structure. The cost and energy required for stormwater treatment would be a major concern going forward. But what if we sent this continuous flow to water plants as raw water?  All of a sudden we have a solution to two problems – stormwater and raw water supplies.  How often do you see a 2 for 1 solution?


Talk Radio discussion

Hi All.

This is a radio show I did this week.  One of 4 I have scheduled.  It talks about me and my company, outlook, thoughts.  Take a listen.  Let me know what you think!

Fred


Based on my last blog, his inquiry came to me.  And I think I actually have an answer:  when bakers and insurance companies decide there is real exposure.  Let’s see why it will take these agencies.  There is very little chance, regardless of good faith efforts, significant expertise, or conscientious bureaucrats to stop growth and development.  The lobby is simply too strong and local officials are looking for ways to raise more revenues.  Development is the easiest way to increase your tax base.  As long as there are no limits placed on develop-ability of properties (and I don’t mean like zoning or concurrency), development will continue.  But let’s see how this plays out.  Say you are in an area that is likely to have the street inundated permanently with water as a result of sea level rise (it could be inland groundwater, not just coastal saltwater).  For a time public works infrastructure can deal with the problem, but ultimately the roadways will not be able to be cleared.  Or say you are located on the coast, and repeated storm events have damaged property.  In both cases the insurance companies will do one of three things:  Refuse to insure the property, insure the property (existing) only for replacement value (i.e. you get the value to replace) but no ability to get replacement insurance, or the premiums will be ridiculous.  We partially have this issue in Florida right now.  Citizen’s is the major insurer.  It’s an insurance pool created by the state to deal with the fact that along the coast, you cannot get commercial insurance.  So Citizens steps in.  The state has limited premiums, and while able to meet its obligations, in a catastrophic storm would be underfunded (of course in theory is should have paid out very little since 2006 since no major hurricanes have hit the state, but that’s another story). 

As the risk increases, Citizens and FEMA, the federal insurer, have a decision to make.  Rebuilding where repeated impacts are likely to happen is a poor use of resources and unlikely to continue.  Beaches and barrier islands will be altered as a result.  The need will be to move people out of these areas, so the option above that will be selected will be to pay to replace (move inland or somewhere else).  Then the banks will sit up.  The banks will see that the value of these properties will not increase.  In fact they will decline almost immediately if the insurance agencies say we pay only to relocate.  That means that if the borrowers refuse to pay, the bank may not be able to get its money out of the deal on a resale.  We have seen the impact on banks from the loss of property values as a result of bad loans.  We are unlikely to see banks engage in similar risks in the future and unlikely to see the federal insurers (Fannie Mae, Freddie Mac) or commercial re-insurers like AIG be willing to underwrite these risks.   So where insurance is restricted, borrowing will be limited and borrowing time reduced.  That will have a drastic impact on development.  The question is what local officials will do about it?

There are options to adapt to sea level rise, and both banking and insurance industries will be paying close attention in future years.  Local agencies will need a sea level rise adaptation plan, including policies restricting development, a plan to adapt to changing sea and ground water levels including pumping systems to create soil storage capacity, moving water and sewer systems, abandoning roadways, and the like, and hardening vulnerable treatment plants.  Few local agencies have these plans in place.  Many local officials along the Gulf states refuse to acknowledge the risk.  What does that say about their prospects?  Those who plan ahead will benefit.  Southeast Florid a is one of those regions that is planning, but it is slow process and we are only in the early stages.

Regardless of the causes, southeast Florida, with a population of 5.6 million (one-third of the State’s population), is among the most vulnerable areas in the world for climate change due its coastal proximity and low elevation (OECD, 2008; Murley et al. 2008), so assessing sea level rise (SLR) scenarios is needed to accurately project vulnerable infrastructure (Heimlich and Bloetscher, 2011). We know that sea level has been rising for over 100 years in Florida (Bloetscher, 2010, 2011; IPCC, 2007). Various studies (Bindoff et al., 2007; Domingues et al., 2008; Edwards, 2007; Gregory, 2008; Vermeer and Rahmstorf, 2009; Jevrejeva, Moore and Grinsted, 2010; Heimlich, et al. 2009) indicate large uncertainty in projections of sea level rise by 2100. Gregory et al. (2012) note the last two decades, the global rate of SLR has been larger than the 20th-century time-mean, and Church et al. (2011) suggested further that the cause was increased rates of thermal expansion, glacier mass loss, and ice discharge from both ice-sheets. Gregory et al. (2012) suggested that there may also be increasing contributions to global SLR from the effects of groundwater depletion, reservoir impoundment and loss of storage capacity in surface waters due to siltation. The loss of groundwater, mainly from confined aquifers, is troubling, and currently completely unknown. The contribution of carbon dioxide, commonly occurring in deep groundwater is also unknown. To gauge the risk to property in southeast Florida, Southeast Florida Regional Climate Compact and Florida Atlantic University reviewed twelve different projections of SLR and its timing. The consensus was 3” to 7” by 2030 and 9” to 24” by 2060. From the literature review and analysis, it was concluded that approximately 3 ft. of sea level rise by 2100 would a suitable scenario and time frame to illustrate the methodology presented in this article. To allow flexibility in the analysis due to the range of increases within the different time periods, an approach that uses incremental increases of 1, 2, and 3 feet of SLR was considered for risk scenarios. An issue normally ignored in sea level rise projections is groundwater. The importance of the groundwater table in the model is that it is responsible for determining the soil storage capacity. Soil is composed of solids, water, and air (voids). Soil storage capacity depends on physical and chemical properties, water content of the soil, and depth to the water table or confining unit (Gregory et al 1999). As the rain infiltrates the soil, unsaturated pores quickly fill up, effectively raising the water table (Gregory et al 1999). For example efforts, a groundwater surface elevation map was derived based well site information available from the USGS (http://groundwaterwatch.usgs.gov) that had a minimum of 35 years of continuous data. Using GIS, an inundation model was created in GIS by subtracting the groundwater surface model from the digital elevation model with the difference in elevation being the soil storage capacity. The photo shows the evolution of these features as applied to a section of northwestern Miami-Dade County. What this indicates it that the impact of sea level rise on low-lying inland areas may be far different that the projections using the bathtub models. It also means that wellfields, sewer mains, roadways and storm water systems will be affected far more quickly than projected from bathtub models. The method used here suggested that the estimated may be off by a factor of two of three.


The world population is expected to grow to over 9 billion by 2050, an exponential trend that has continued for several hundred years and see no end it site.  Megaregions as people flock to cities and industry will be commonplace.  The question is how will water supplies be impacted, or impact this trend.  Interestingly it varies everywhere.  For example, China and India are not expected to reap major benefits from climate changes, so their economies will grow as will populations.  They continue to construct coal fired power plants, and impact carbon dioxide and pollution levels, which does not help the climate issues.   Recall that Beijing was basically shut down for several days recent due to smog – seems like I recall the first air pollution regulations stemming from Henry the VIII decision to move the coal plants out of London during his reign 500 years ago because of pollution, but perhaps we need to relearn history J.  Of course China and India are expected to be less affected than the more historically developed countries in the northern latitudes that have been moving to renewable and less impactful power solutions with good reason.  Aside from these two economies, the rest of the northern latitudes are likely to see changes in temperature, variation in precipitation patterns and drought frequency changes.  That has major impacts for a billion people who will see water supply shortages occur much more often, and create a whole host of “winners” and “losers” in the water supply category.  Conflicts may result from the need to change increase water supplies as desperation kicks in.  Lawrence Smith, in his book 2050, suggests that while the far northern countries, the US, Russia, the Scandanavian countries, and Canada may see more land for agriculture and more water (at least in some areas), those warmer countries in the sub-Sahara, will become more desperate and dangerous to the world order.  Water will be the new oil, and the tipping point for sustainability, akin to peak oil, needs to be developed.  The cost will be significant, but the failure will be catastrophic to global economies.  This is part of why the global pursuit of renewable power, local solutions and green jobs.  It is why the definition of sustainable water supplies continues to evolve as we understand that the impacts, or the constraints of water supplies is far more reaching than most engineers and planners have traditionally dealt with.  AWWA published a Sustainable Water CD several years ago.  It was a series of papers of different aspects of sustainability as applied to water resources.  The last paper summarized the findings and compared it to the initial paper discussion.  The conclusion was the concept is evolving.  Climate, power, agriculture, natural systems, local economies, local economic contributions to regional and national economies and politics all impact pure science recommendations for water supply allocation.  The question is can we overcome the politics to create a optimized science solution to sustain water supplies and economies.  An old Native American proverb comes to mind:  We do not inherit the Earth from our grandparents, we borrow it from our grandchildren.